INSTRUCTION MANUAL FT-IOI YAESU MUSEN CO., LTD. TOKYO JAPAN. #### TABLE OF CONTENTS | GENERAL DESCRIPTION | age | 1 | |-------------------------------------|-------|----| | SPECIFICATIONS | age | 2 | | INSTALLATION | age | 3 | | (A) BASE STATION | | | | (B) MOBILE STATION | | | | CONTROLS & SWITCHES | age | 6 | | OPERATION | age | 9 | | CIRCUIT DESCRIPTION | age | 12 | | (A) BLOCK DIAGRAM | | | | (B) TUBE & SEMICONDUCTOR COMPLEMENT | | | | (C) CIRCUIT BOARD DESCRIPTIONS | | | | (D) CRYSTAL CALCULATIONS | | | | (E) CW FILTER | | | | ALIGNMENT INSTRUCTIONS | age í | 25 | | RESISTANCE VOLTAGE CHART | age : | 34 | | PART LIST | age : | 36 | # FT-IOI SSB TRANSCEIVER #### GENERAL DESCRIPTION The model FT-101 SSB Transceiver is a precision built, compact high performance transceiver of advanced design providing SSB (USB, LSB selectable). CW and AM modes of operation. The FT-101 operates at an input of 260 watts SSB, 180 watts CW and 80 watts AM on all bands 80 to 10 meters. An auxillary position is provided for optional installation of a customer selected band. All circuits, except the transmitter driver and linear amplifier, are transistorized and composed of standard computer type plug-in modules, permiting easy maintenance. The FT-101 is self-contained, requiring only an antenna and an A.C. mains for home, portable or mobile operation. The FT-101 may be operated from 100/110/117/200/220/234 volts AC when appropriately wired but is normally supplied for 117 volt AC and 12 volt DC operation. The two-way solid state power supply is an integral part of the unit. Two power cords are provided with the transceiver. Selection of AC or DC power source is automatically made when the proper line cord plug is inserted. For mobile operation a separate switch is provided on the front panel to turn off the tube heaters while in the receive mode. In this mode the FT-101 draws only 0.5 amp. less than your auto dash lights. All accessories, such as VOX, break-in CW with sidetone, 25 and 100 KHz calibrators, noise blanker, 10 MHz WWV are built-in. In addition, dual VFO adaptor, crystal control adaptor, speaker and clarifier are integral parts of the unit. Provision is made for the installation of 600 Hz crystal filter for the expert CW-DX operator. The CW filter is selected automatically when the transceiver mode switch is placed in the CW position. The entire transceiver weighs approximately 30 pounds, is 13 1/2" wide, 6" high, 11 1/2" deep. Construction is of heavy-gauge steel which provides an extremely rugged package, virtually immune to the effects of vibration and shock. The SP101P, combination phone patch and external speaker, is a valuable optional accessory for base operation. The unit features an elliptical type speaker for high quality voice reproduction. Other optional equipment includes the FV-101 external VFO and mobile mounting brackets. #### **SPECIFICATIONS** | Frequency Range | 3.5-30 MHz amateur bands, (80 thru 10m) 26.9-27.5 MHz (CB) 10-10.5 MHz (WWV) | |--------------------------------|--| | Type of Emission | USB or LSB (selectable)
CW, AM | | Power Input | . SSB 260 Watts PEP
CW 180 Watts 50% duty cycle
AM 80 Watts
(slightly lower on 10 meters) | | Carrier Suppression | 50 db | | Sideband Suppression | . 50 db at 1000 Hz | | Spurious Radiation | Down 40 db or more | | Transmitter Frequency Response | 300 Hz - 2700 Hz \pm 3 db | | Distortion Products | Down 30 db or more | | Antenna Output Impedance | . 50 - 75 ohm unbalanced | | Frequency Stability | Less than 100 Hz drift in any 30 minute period | | Sensitivity | 0.3 uV S/N 10 db | | Selectivity | (2.4 KHz at 6 db)
(4.5 KHz at 60 db) SSB, AM, CW
*(600 Hz at 6 db)
(1.2 KHz at 60 db) CW filter | | Audio Output | | | Power Consumption | AC Receive 35 Watts Transmit 300 Watts Max. DC 12V Standby 0.5 Amp. Transmit 20 Amps. Max. | | Dimensions | 13 1/2" wide, 6" high, 11 1/2" deep | | Weight | . Approx. 30 Pounds | | * Option | | #### INSTALLATION #### General: The FT-101 Transceiver is designed to provide a complete single unit installation for fixed, portable, or mobile operation. Two prewired plugs are furnished with the unit for AC or DC voltages operation. This system provides the flexibility required for various installations and allows rapid change from fixed to mobile operation. #### Base Station Installation: The transceiver is designed for use in many areas of the world using supply voltages that may differ from the operators local supply voltage. Therefore, before connecting the AC cord to the power outlet, be sure that the voltage marked on the rear of the transceiver agrees with the local AC supply voltage. #### CAUTION Permanent damage will result if improper AC supply voltage is applied to the transceiver. The transceiver should be connected to a good ground. The ground lead should be connected to the terminal marked GND located on the rear panel of the transceiver. #### Mobile Installation; The FT-101 Transceiver will operate satisfactorily from any 12 volt negative-ground battery source by connecting the DC power cord to the rear panel receptacle. For under-dash mounting, a special mounting bracket is available from your dealer. A location should be selected clear of heater ducts. No special mounting precautions need be observed if adequate ventilation space is available. A minimum of two inches of air space above the cabinet top and on all sides is recommended to allow proper air flow around the cabinet. Never stack other units above or below the cabinet since the accumulated heat from both units could cause permanent damage. The transceiver requires an average of 14 amps on transmit and 20 amps on voice peaks. The fuse in the DC power cable should be rated at 20 amps. When making connections to the car battery, be certain that the RED lead is connected to the positive (+) terminal and the BLACK lead to the negative (-) terminal of the battery. Reversed connections could permanently damage the transceiver. The BLACK lead should run directly to the negative terminal of the battery. Using the car frame as a negative connection or connecting the positive lead at a point such as the ignition switch places the devices creating noise in the same current path as the transceiver and fails to take advantage of the filtering action of the battery. The power cable should be kept away from ignition wires and be as short as possible to minimize voltage drop and to provide a low impedance path from the transceiver to the battery. Prior to operating the transceiver in a mobile installation, the voltage regulator setting should be checked. In many vehicles, the voltage regulations is very poor and in some cases, the regulator may be adjusted for an excessively high charging voltage. As the battery and regulator age, the maximum voltage while charging can increase to a very high level which is injurious to the battery and could cause damage to the transceiver. The transceiver is designed to operate from a source voltage range of 11 to 14 volts. It is necessary to carefully set the regulator so that the highest charging voltage does not exceed 14 volts. The transceiver should be switched "OFF" when vehicle is started to prevent voltage transcients from damaging power supply transistors. #### Antenna ; #### CAUTION Never transmit without having proper antenna or dummy load connected to the transceiver The transceiver is designed for use with resonant antenna having an impedance 50 - 75 ohm resistive load. The antenna is usually the most critical part of a station installation. Results both in receiving and transmitting will depend on how well the antenna is installed and adjusted. Any of the common antenna systems designed for use on the high frequency amateur bands may be used with the transceiver, provided the input impedance of the antenna system is within the capability of the transceiver pi-matching network (50-75 ohms). If a tuned open wire transmission line, or a long wire antenna is used, a suitable antenna tuner must be used between the antenna and the transceiver to provide an impedance match between the unbalanced coaxial output of the transceiver and the balanced open-wire feeder or long wire. For mobile operation, most of the commercially available antennas on the market will give good results with coaxial cable is securely grounded to the chassis of the vehicle at the antenna mount. Adjust the antenna length carefully for minimum SWR after installation. #### INTERCONNECTIONS ### INTERCONNECTION DIAGRAM #### FTV-650 (6 METER TRANSVERTER) The FTV-650 transverter is supplied with a 6.3 Volts heater and bias supply for use with other Yaesu equipment When the FTV-650 is used in conjunction with FT-101 transceiver, the modifications shown must be accomplished prior to interconnection of the units. #### CONTROLS AND SWITCHES The FT-101 Transceiver has been specifically designed for ease of operation and versatility. All controls have been preset at the factory. Several of the controls are unusual in operation, and improper adjustment may result in signals of poor quality. The various front panel controls and their functions are described in the following section. Be certain that you understand thoroughly the function of each control before operating the transceiver. #### (1) VFO Select Switch; This switch provides selection of the companion FV-101 external VFO or two fixed crystal oscillator positions. Normal operation of the transceiver VFO requires that the switch be placed in the "INT" position. INT-- FT-101 VFO controls both transmitter and receiver frequencies RX EXT-- FV-101 EXTERNAL VFO controls the receiver frequency and the FT-101 VFO controls transmitter output frequency. TX EXT-- FV-101 EXTERNAL VFO controls the transmitter output frequency and the FT-101 VFO controls the receiver frequency. EXT-- FV-101 EXTERNAL VFO
controls both transmitter and receiver frequencies. CH1, CH2--Provides crystal control of the transceiver. Proper crystals must be installed on PB-1060A crystal oscillator board, for crystal controlled operation. (2) Mode Switch; (LSB-USB-TUNE-CW-AM) The mode switch is a five-position switch. This switch is used to select the mode of operation; LSB, USB, AM, CW, or TUNE position. In the AM, CW and TUNE positions, a separate crystal is used to shift the carrier frequency into the filter passband. #### (3) RF GAIN/AF GAIN; The RF GAIN/and AF GAIN controls are mounted on concentric shafts. RF GAIN control (lever control) varies the gain of the receiver RF and IF amplifier. Maximum sensitivity is obtained with the control set at 10 (fully clockwise). The AF GAIN control (round knob) adjusts the audio output level at the speaker and phone jack. Clockwise rotation increases the audio output. #### (4) Tuning Knob The tuning knob located directly below the main dial window in combination with the band switch determines the actual frequency of operation. The VFO drive mechanism consists of a precision spring loaded split gear system in combination with a planetary drive unit to provide zero backlash at low tuning rates. Each revolution of the tuning knob results in a frequency change of 16 KHz as indicated on the skirt surrounding the tuning knob. #### (5) BAND Switch; The band switch is an eleven-position switch used to select the desired band for receiving or transmitting. The band indication is color coded to guide the operator selecting in the proper frequency scale for each band. #### (6) CLARIFIER; The clarifier control provides a means for tuning the receiver frequency 5 KHz to either side of the transmitting frequency. Thus, it is possible to set the pitch of the voice you are receiving to the most readable point without affecting your transmitting frequency. Its use is particularly valuable in "net" operation Where several participants may be transmitting slightly off frequency. The clarifier control may be switched off and the receiver locked to the transmitting frequency by setting the clarifier control to the OFF position. Normally, you will want to keep the clarifier in the OFF position until the initial contact is made. The clarifier control may then be used to zero-in and correct any drift on the received signal. #### (7) PRESELECT; This control pretunes the signal circuits for both transmit and receive. The preselect circuit provides continuous permiability tuning throughout the frequency range of the transceiver. #### (8) MIC GAIN/CARRIER: The MIC GAIN/CARRIER controls are mounted on concentric shafts. The carrier control (lever control) varies the amount of the carrier in the CW, AM and TUNE modes of operation. The MIC GAIN control (round knob) varies the audio level from the microphone amplifier stage. The control has sufficient range to permit the use of any high impedance crystal or dynamic microphone. Both controls have maximum gain with the control set at 10 (fully clockwise). #### (9) PLATE: Tunes plate circuit of the final amplifier. #### (10) LOADING; Tunes the output circuit of the pi network to match antenna and feed line impedance. #### (A) POWER Main switch turns transceiver "on" for both AC and DC operation. #### (B) HEATER With this switch in the down position, the transmitter tube heaters are turned off. This reduces battery drain to 0.5 amp and thus permits long periods of listening without excessive battery drain. Pushing the rocker switch to the upper position provides supply voltage to the tube heaters. After a 30 second warm-up, the transmitter is ready for operation. This switch operates in both DC and AC modes. #### (C) MOX-PTT-VOX This slide switch selects desired transmitter mode for both microphone and key operation. MOX-(Manual transmit switch position) Locks transmitter "ON" and must be returned to PTT position for receiver recovery. #### PTT-(Push-to-talk) Locks transmitter "ON" when microphone switch is depressed. Receiver recovers automatically when microphone switch is released. VOX-(Voice operated transmit or break-in CW operation) This switch position allows the operator to actuate the transmitter by simply speaking into the microphone. Receiver recovers automatically when the operator stop speaking. For break-in CW, the VOX system will actuate the transmitter each time the key is depressed, receiver recovers each time key is released. #### (D) NB (NOISE BLANKER) In upper position, the noise blanker is placed in the circuit and eliminates noise pulses caused by auto ignition. #### (E) RF ATT (RF Attenuator) This switch provides insertion of a 20 db attenuator in the incoming signal path to minimize cross modulation which may be caused by extremely strong local signals. #### (F) 25 KHz/100 KHz (CALIBRATOR) The 100 KHz crystal oscillator is used to calibrate the receiver. In the 25 KHz position, the 25 KHz multivibrator generates a marker signal at each 25 KHz point on the dial. Clarifier control must be in the "OFF" position when setting calibration. #### (G) PHONE Headphone may be inserted in this jack for private listening. The internal speaker is disconnected when the headphone plug is inserted. Any high quality headphone may be used. #### (H) MIC Microphone Jack. Four pin connector is used for microphone input, and push to talk relay actuation. #### (I) METER Selects the meter mode to read PA cathode current (I.C.), relative power output (PO), or ALC feedback voltage. #### REAR APRON CONNECTIONS AND CONTROL #### (a) AF-IN; Audio input jack for auxiliary station equipment. An FM detector unit, or a high level microphone, may be applied at this point for audio output from the transceiver speaker. #### (b) IF OUT; 3180 KHz IF signal is available from this jack for use with other station equipment such as panoramic adapter, etc. #### (c) SP; Audio output is provided at this jack for an external speaker. Output impedance is 4 ohms and the internal speaker will be disabled when plug is inserted. #### (d) PTT; This jack may be used for external actuation of the transmitter. As an example, a foot switch may be inserted into this jack to provide remote control of the transmitter PTT relay. #### (e) PATCH; Speech input terminal for phone patch connection. Impedance is 50 K ohms. #### (f) AUX: This jack is connected to the receiver output (4 ohms) to be used for phone patch or other use. #### (g) FAN; Power outlet for optional cooling fan. #### (h) RF OUT Signal frequency output from the driver stage may be obtained at this jack for use of optional equipment, such as the FTV-650 6 meter transverter. #### (j) GND: Ground connection. #### (k) P.O. ADJUSTMENT: Meter sensitivity adjustment for relative power output indication. #### (m) ANT; Coaxial connection for antenna. #### (n) ACC; Accessory socket. Provides access to transceiver operating voltages and relay contacts at this outlet. #### (p) KEY; Key jack for code operation. #### (q) EXT VFO; Connections for external VFO. #### (r) FUSE: Fuse holder requires 5 amp fuse for 117 volt or 3 amp fuse for 220 volt operation. D.C. power cord fuse 20 amp. #### (s) POWER; Power receptacle. Both AC and DC cables are supplied. #### **OPERATION** The tuning procedure of the FT-101 Transceiver is not complicated, however, care should be exercised when tuning to insure peak performance of the equipment. The following paragraphs describe the procedure for receiver and transmitter tuning. #### INITIAL CHECK Before connecting the transceiver to a power source, carefully examine the unit for any visible damage. Check that all modules and crystals are firmly in place and that controls and switches are operating normally. Ensure that voltage specification marked on rear panel matches the supply voltage. #### FREQUENCY SELECTION The main tuning dial is color coded with the band selector switch for proper frequency read out. When band selected is marked in Red, the operator reads the Red numbers on the main tuning dial. When for example the band selected is marked in White on transceiver front panel, the operator reads the Black numbers on main tuning dial. The main tuning dial is marked in 25 KHz increments between each 100 KHz segment. This provides a course frequency setting within the band. The dial skirt surrounding the tuning knob is marked in 1 KHz increments and provides for fine settings of the transceiver operating frequency. Following the example shown, familiarize yourself with the relationship of main and skirt dial frequency readout. #### RECEIVER CALIBRATION; | Preset the controls and s | switches as indicated; | |---------------------------|------------------------| | VFO Selector | INT (internal) | | MOX-PTT-VOX | PTT | | POWER | ON (upper position) | | RF GAIN | Maximum | | AF GAIN | As required | | BAND | Desired band | | MODE | Desired mode | | TUNING | .100 KHz point | | PRESELECTOR | Desired band segment | | CLARIFIER | OFF | | RF ATT | OFF | | CALIBRATOR | .100 KHz | To calibrate, set the TUNING control to the 100 KHz point on the dial nearest the desired frequency. Tune the preselector for maximum "S" meter deflection. Tune the transceiver to the 100 KHz calibrator signal for zero beat. Two signals may be heard near the 100 KHz point. One of these is a signal feeding through the IF stages. Always calibrate to the stronger of these two signals. To calibrate, hold tuning knob firmly at zero beat point and rotate skirt vernier dial to zero position. The skirt vernier dial surrounds the tuning knob and is held in position by a friction locking device. This dial is easily movable by hand but will retain its position after calibration. The transceiver must be calibrated when changing mode of operation of LSB, USB, AM or CW, Switch the calibrator to the 25 KHz position and note that the calibrator signal can be heard at every 25 KHz point. The calibrator switch should be in the OFF position in normal use of the transceiver. For
bands 40-20-15-10A-10C read Black scale on main dial. Setting shown in the example would then be 148 KHz plus the starting band edge frequency in MHz. For example, on 40 meters the frequency would be 7.148 MHz. On 20 meters, 14.148 MHz, etc. For bands 80-10B-10D read Red scale on main dial. Settings shown in the example would then read 648 KHz. For example, on 80 meters the frequency would be 3.648 MHz, on 10B, 28.648 MHz, etc. #### TRANSMITTER TUNE-UP The following tune-up procedure must be performed prior to selection of desired operating mode, LSB, USB, CW, or AM. See paragraphs relating to the specific mode after basic transmitter tune-up. Connect dummy load or matched antenna to the coaxial fitting on rear apron, and preset controls as follows: | ROWEROFF | |-------------------------------------| | HEATER ON | | MODETUNE | | CARRIER 0 (fully counter-clockwise) | | BAND Desired band | | TUNING Desired frequency | | PRESELECTORDesired band segment | | PLATE Desired band segment | | LOADING To position shown in table | | METER IC | | VFO SELECT INT | | MOX-PTT-VOXPTT | #### LOADING POSITIONS | BAND | LOADING | |------|---------| | 80 | 5 | | 40 | 5 1/2 | | 20 | 3 1/2 | | 15 | 3 | | 10A | 4 | | 10B | 4 | | 10C | 4 | | 10D | 4 | NOTE: Loading positions are nominal. Slight variations from positions shown are to be expected. With the transceiver turned on, allow 60 seconds for warm-up of the transmitter tubes. Be certain that accessory plug is in the accessory socket. The heater voltage to the final tubes is supplied through pins 1 and 2 of the accessory plug. Set the "MOX-PTT-VOX" switch to MOX position. Meter will now read Final Amplifier resting cathode current. This should be set at 50 mA with the BIAS control located under the top cover near the rear of the set. Switch the meter to ALC position and adjust ALC control under the top cover for full scale deflection of the meter. Return meter switch to IC position and "MOX-PTT-VOX" switch to PTT position. #### PRE-TUNING - Adjust "PRESELECT" for maximum receiver noise level. - 2. Place "MOX-PTT-VOX" switch "MOX" position. - 3. Rotate "CARRIER" control arm until meter rises just above normal idling current. (50 mA) - Adjust "PRESELECT" for maximum meter reading. (Caution: if meter exceeds .1 (100 mA), reduce "CARRIER") - Rotate "PLATE" control for minimum meter reading. (Plate Dip) - 6. Return "MOX-PTT-VOX" switch to PTT position. The transmitter is now pretuned to the desired frequency. Final peak tuning is accomplished by carefully following the final tuning procedure. #### FINAL TUNING Final peak tuning utilizes the meter relative power output position (P.O.). At full transmit power the meter will read approximately one-half to two-thirds full scale into a matched antenna load. If during final tune-up it is noted that the meter indication exceeds full scale, discontinue tune-up. Off scale meter indications are the result of reflected RF due to high VSWR and corrective action should be taken before attempting final tune-up. #### CAUTION Exceeding the time limits noted during final tuning may result in destruction of final output tubes. - Set meter switch to P.O. position, rotate "CARRIER" control arm fully clockwise to position 10. - Momentarily set "MOX-PTT-VOX" switch to "MOX" (10 second maximum), and rotate "PRESELECT" control for <u>maximum</u> meter reading. Return "MOX" to PTT position. - 3. Momentarily set "MOX-PTT-VOX" switch to "MOX" (10 second maximum) and increase or decrease "LOADING" control for maximum meter reading. Return "MOX" to PTT position. - Momentarily set "MOX-PTT-VOX" switch to "MOX" (10 second maximum) and increase or decrease "PLATE" control for <u>maximum</u> meter reading. Return "MOX" to PTT position. - 5. Repeat steps 3 and 4 until maximum meter reading is obtained. The transmitter is now tuned for maximum output. Return "CARRIER" control arm fully counter-clockwise to zero position. Return meter switch to IC position and MODE switch to desired operating mode. NOTE: Moving the "MOX-PTT-VOX" switch to the "MOX" position in the above steps may be eliminated by simply operating the microphone PTT switch when microphone is attached to the transceiver. #### SSB OPERATION After completion of tuning, set MODE switch to LSB or USB. Set the METER switch to ALC position. Set the "MOX-PTT-VOX" switch to the PTT position and advance the MIC GAIN control until the meter kicks up to midscale of green colored portion when speaking normally into the microphone. Set the "MOX-PTT-VOX" switch to VOX position. For VOX operation, adjust VOX GAIN potentiometer under the top cover until voice actuates the transceiver. Set the ANTITRIP potentiometer to the minimum point to prevent the speaker output from tripping the VOX. Do not use more VOX gain or ANTITRIP gain than necessary. Adjust the DELAY potentiometer under the top cover for suitable release time. NOTE: When meter is set to IC, voice modulation peaks will indicate 150-200 mA. Actual peak current, however, is approximately 2 times the indicated value. #### CW OPERATION Upon completion final tuning, insert key plug in jack marked "KEY" on rear apron of the transceiver. Power output from the transmitter is determined by the "CARRIER" control arm position. The operator may select any power output desired by simply rotating the "CARRIER" control within the limits of its range from zero to ten. The transceiver may be operated manually or break-in by setting the "MOX-PTT-VOX" switch to either MOX (manual) or VOX (break-in) for the desired mode of operation. NOTE: Insertion of the key plug automatically disconnects the bias supply to the PA tubes, therefore, with the key plug inserted Final Amplifier bias current will not be indicated when meter is in the IC position. #### AM OPERATION AM operation of the transceiver is accomplished by setting the MODE switch to the AM position and inserting the proper amount of "CARRIER" with the "CARRIER" control. After completion basic transmitter tune-up, place the MODE switch in the AM position and rotate "CARRIER" control arm until meter reads . 1 (100 mA) in the IC position. While speaking into the microphone normally, increase MIC GAIN until the meter indicates very slight movement with voice peaks. Care must be taken in adjusting MIC GAIN control to assure that the "CARRIER" control arm is not rotated causing an increase in "CARRIER" level. Do not exceed .1 (100 mA) meter indication during AM operation or destruction of the Final Amplifier tubes may result. #### CIRCUIT DESCRIPTION The block diagram and the circuit description that follows will provide you with a better understanding of this transceiver. | TUBE & S | SEMICONDUCTOR COMF | PLEMENT | AUDIO U | nit PB-1081C | | |-----------|------------------------|---------|----------|--------------------|----------| | | | | Q1 | MIC amplifier | MK-10 - | | HF Unit P | B-1077B | | Q2 | MIC amplifier | 2SC372Y | | Q1 | RF amplifier | 3SK39Q | Q3 | Emitter follower | 2SC372Y | | Q3 | Receiver 1st Mixer | 2SC372Y | Q4 | VOX amplifier | TA7042M | | Q4 | Transimitter 2nd Mixer | 2SC784R | Q5 | Relay control | MK-10 | | Q5 | Local osc. | 2SC372Y | Q6 | Relay control | 2SC373 | | | | | Q7 | CW side tone osc. | 2SC373 | | HIGH FRE | QUENCY IF Unit PB-108 | 34C | Q8 | CW side tone ampl. | 2SC372Y | | Q1 | Transmitter 1st Mixer | 2SC372Y | Q9 | AF amplifier | STK401 | | Q2 | Receiver 2nd Mixer | 3SK39Q | | | | | | | | VFO Unit | PB-1056 | | | LOW FRE | QUENCY IF Unit PB-10 | 80A | Q1 | VFO osc. | 3SK22G | | Q1 | IF amplifier | MK-10 | Q2 | Buffer | 3SK22G | | Q2 | IF amplifier | 2SC784R | Q3 | Amplifier | 2SC372Y | | Q3 | IF amplifier | CA3053 | | | | | Q4 | AGC amplifier | 2SC828Q | FIX Unit | PB-1060A | | | Q5 | S meter | 2SC828Q | Q1 | Crystal osc. | MK-10 | | Q6 | Noise Blanker | 2SC372Y | | | | | | | | REGULAT | OR Unit PB-1079A | | | | OR Unit PB-1078A | | Q1 | 100 KHz osc. | 2SC735Y | | Q1 | IF amplifier | MK-10 | Q2 | 25 KHz Multivib. | 2SC735Y | | Q2 | AM modulator | 2SC372Y | Q3 | 25 KHz Multivib. | 2SC735Y | | Q3 | USB osc. | 2SC372Y | Q4 | Marker amplifier | 2SC735Y | | Q4 | LSB osc. | 2SC372Y | Q5 | Regulator | 2SC697 | | Q5 | CW-AM osc. | 2SC372Y | Q6 | Regulator control | 2SC372Y | | Q6 | Buffer | 2SC372Y | | | | | | | | Driv | er tube | 12BY7A | | | | | Fina | ıl | 6JS6A ×2 | #### CIRCUIT BOARD DESCRIPTION The FT-101 Transceiver has adopted computor type plug-in modules. These modules are; High frequency unit, High frequency IF unit, LOW frequency IF unit, Audio unit, Modulator unit, and Power regulator unit. In addition, the VFO unit, crystal controlled oscillator unit and rectifier unit are built-in to the main chassis. #### (1) HF UNIT (PB-1077B) This module contains the receiver RF amplifier, receiver 1st mixer, transmitter 2nd mixer and heterodyne oscillator circuit. The signal from the antenna coil is fed to the gate of Q1 (field effect transistor 3SK39Q) through terminal 8 of the module. The AGC (automatic gain control) voltage which is obtained from the low frequency IF unit, is applied to the gate circuit of Q1 from pin 9 to control the gain of this stage. A manual RF gain control on the front panel is connected to the source of Q1 through pin 10. Signal output from the Q1 is then coupled to the receiver first mixer Q3, 2SC372Y where the incoming signal is mixed with a signal from the heterodyne oscillator Q5, 2SC372Y. The product of the first mixer is applied from the pin 17 to the high frequency IF unit. Transmitter signal is fed to the base of transmitter 2nd mixer Q4, 2SC373 from pin 13. The signal from the heterodyne oscillator is applied to the emitter of the mixer Q4, through pin 15 from output transformer T111. This arrangement converts the high frequency IF signal to the desired transmitting frequency. This transmitting signal is fed to T102 through pin 11. The base circuit of the receiver mixer Q3 is disconnected in transmit by a relay to avoid the lowering the Q of
the circuit. Crystal sockets and all coils are mounted on the main chassis. #### (2) HIGH FREQUENCY IF UNIT (PB-1084C) The module contains the transmitter first mixer Q1, 2SC372Y, the receiver second mixer Q2, 3SK39Q, and 5520 to 6020 KHz bandpass network. The signal from the receiver first mixer is fed to the gate of the mixer through the bandpass network L1, L2, and L3, from pin 15. VFO voltage is also applied to the source of Q2 from pin 11. The signal is converted to 3180 KHz low frequency IF and fed to the following stage from pin 3 through an output transformer T112. On transmit, the 3180 KHz signal is fed to the base of the mixer, from pin 5. A 14 MHz trap coil T113 is connected in the base circuit of Q1. The VFO signal is fed to the emitter of the Q1 which produces the 5520 to 6020 KHz high frequency IF signal. This signal is fed to the following stage from pin 16 through the bandpass network. BANDPASS NETWORK CHARACTERISTICS #### (3) LOW FREQUENCY IF UNIT (PB-1080A) This module contains the low frequency IF amplifier, filter, noise blanker, detector and AGC/S meter circuits. On receive, a 3180 KHz signal is fed to the gate of Q1 MK-10(F), FET from pin 15 of the module. Noise pulses on the 3180 KHz signal are rectified by D15 and D16, 1S1007 and are then amplified by the noise amplifier Q6, 2SC372Y. The output from Q1 is fed to the crystal filter XF-1, through the noise blanker diode D2, 1S1007. The diode disconnects the input of the crystal filter each time there is noise pulse. The diode switch is driven by the noise amplifier Q6. The switching level is adjusted by the noise blanker threshold control VR3. At the most effective blanking position, there may be slight distortion on the received signal due to mixing at the switching diode. This effect can be reduced by adjusting the threshold control slightly. D4-D7 are diode switches which select the crystal filter for SSB or CW reception. The 600 Hz CW filter XF-30C is an optional feature available at additional cost from your dealer. The diode switch selects the CW filter automatically when the MODE switch is set to CW position. This control voltage is derived from pin 9 and 12. The signal from the crystal filter is fed to the base of Q2, 2SC784R and is amplified by Q2 and Q3, CA3053 integrated circuit. The gain of these two stages is controlled automatically by the AGC voltage derived from AGC amplifier Q4, 2SC828Q. The gain is also controlled manually by the RF gain control on the front panel. The output from Q3 is fed through T109 to the ring demodulator D11-D14 for CW and SSB reception. The carrier signal is fed to the detector from pin 5. The carrier signal is balanced by VR1 to obtain minimum distortion and also to avoid S-meter reading which may be influenced by the carrier oscillator signal. The AM signal is detected by D10, 1S1007 and fed to the audio amplifier stage from pin 4 through the MODE switch. The detected audio signals are connected to audio amplifier unit from pin 4 (AM) and pin 6 SSB & CW through the MODE switch on the front panel. D8, 1S1007, D9, 1S1941 AGC rectifiers drive the AGC amplifier Q4. The emitter of Q4 controls S-meter amplifier Q5, (2SC828Q). On transmit, the signal is applied to the gate of Q1 from pin 15. It is then amplified and passed through the crystal filter. The output from the crystal filter is applied to the high frequency IF unit from pin 10. CW FILTER INSTALLATION DIAGRAM #### (4) AUDIO UNIT (PB-1081C) This module contains the microphone amplifier, receiver audio amplifier, VOX amplifier and CW sidetone oscillator. A speech signal from the microphone is fed to the first MIC amplifier Q1, MK10(F) FET from pin 5. Input impedance of the MIC amplifier is 50 K ohms. The signal, controlled in amplitude by the MIC GAIN control between pin 3 and pin 4, is amplified by the second microphone amplifier Q2, 2SC372Y and applied to the emitter follower Q3, 2SC372Y to be delivered to the modulator unit from pin 8. The receiver audio signal from the AUDIO GAIN control is applied to the audio amplifier Q9, STK401 integrated circuit from pin 17. This stage, in turn, increases the signal to speaker level. The audio power amplifier circuit utilizes the OTL (output transformer less) circuit and delivers 3 watts output to the speaker through pin 22. The signal from the first microphone amplifier is coupled through the VOX GAIN control potentiometer VRI-to VOX amplifier Q4, TA7042M. The signal amplified by Q4 is fed to the VOX rectifier. The positive DC output voltage of the rectifier is applied to the gate of the VOX relay control transistors Q5, MK-10 (D) and Q7, 2SC373 causing them to conduct and actuate the VOX relay RL1 on the main chassis. The collector circuit of Q6 is connected to RL1 through pin 13. FREQUENCY(KHz) CHARACTERISTICS OF SSB/CW FILTERS The ANTITRIP circuit provides a threshold voltage to prevent the speaker output from tripping the transceiver into the transmit function. The receiver audio output voltage is connected through ANTITRIP control VR5 to the antitrip amplifier Q4, and fed to rectifiers D3 and D4, 1S1941. Negative DC output voltage from the rectifier, connected to the gate of Q5, reduces the gain of the VOX control transistor providing the necessary antitrip threshold. ANTITRIP control VR5 adjusts the value of the antitrip voltage threshold so that the loud speaker output will not produce excessive positive DC output from the VOX rectifier to exceed the nega- tive DC output from the antitrip rectifier and cause the control transistor to actuate the relay. When speaking into the microphone normally the positive voltage will exceed the negative antitrip voltage and actuate the relay. VR3 provides course adjustment for relay sensitivity. Relay hold time will be determined by DELAY control VR2. The tone oscillator Q7, 2SC373 and Q8, 2SC372Y operate when the MODE switch is in CW position. It is a phaseshift oscillator operating at approximately 800 Hz. The uone output is cativated by the keying circuit and coupled through SIDETONE LEVEL control VR4 to the receiver audio amplifier for sidetone monitoring in CW operation. The output from Q8 is also coupled to the VOX amplifier Q4 for break-in CW operation. #### (5) MODULATOR UNIT (PB-1078A) The MODULATOR UNIT contains the carrier oscillators, the ring modulator circuit for SSB, and AM modulator. The carrier oscillator oscillates either 3178.5 KHz for USB or 3181.5 KHz for LSB, depending upon whether Q3, 2SC372Y or Q5, 2SC372Y is selected by the MODE switch. The MODE switch disconnects the emitter circuit of either transistor when not in use. The output from the oscillator is fed to the buffer amplifier Q4, 2SC372Y, and then to the balanced ring modulator D1–D4. The carrier signal is also fed to the ring demodulator from pin 6 for receive. These crystal frequencies are matched to the bandpass of the crystal filter to place the carrier frequency approximately 25 db down on the skirt of the filter response. For AM and CW operation, the 3179.3 KHz crystal controlled oscillator Q6, 2SC372Y operates to produce the carrier signal, and Q3 and Q5 are disconnected. Q2, 2SC372Y operates as a modulator for AM operation and as a buffer stage for CW operation. The speech signal is fed to the balanced ring modulator and AM modulator Q2 from pin 9. Carrier balance is obtained by a potentiometer VR1 and a trimmer capacitor, TC1 Double-sideband, suppressed-carrier output from the balanced modulator is amplified through T110 by the IF amplifier Q1,MK-10 (D), and fed to the low frequency IF unit pin 12. For AM and CW, the output signal from Q2 is fed to the high frequency IF unit, through CARRIER potentiometer VR2 on the front panel. #### (6) POWER REGULATOR UNIT (PB-1079A) The DC 13.6 volts from the rectifier unit is supplied through pin 14 to the voltage regulator circuit Q5. 2SC697 and Q6, 2SC372Y in this unit to obtain extremely stable 6 volt DC supply which is then fed to the various circuits from pin 13. The regulated voltage is supplied to the CLARIFIER control to offset the receive frequency ± 5 KHz either side of the transmitted signal. VR4 permits adjustment of controls to the receive and transmit frequency to coincide at the CLARIFIER zero or OFF position. A-100 volt negative voltage is delivered from pin 5 to the unit. VR2 sets the operating bias at approximately-50 volts for the final amplifier tubes. This bias voltage is-60 volts on receive and supplies the grid circuit of the final tubes on the main chassis from pin 2. The bias for the driver tube 12BY7A is also supplied from pin 4. This voltage is -20 volts on receive and -3.5 volts for transmit. This module also contains the 100 KHz/25 KHz marker generator. Crystal controlled oscillator Q1, 2SC735Y oscillates at the 100 KHz crystal frequency for dial calibration. Trimmer capacitor, TC1 is used to calibrate 100 KHz against WWV or JJY. Output from the oscillator is fed to into 25 KHz multivibrator Q2 and Q3, 2SC735Y which generates a marker signal every 25 KHz. VR1 is used to synchronize the multivibrator to 25 KHz. The multivibrator operates when the supply voltage is applied through pin 17 from the switch on the front panel. The calibrator output is fed through the buffer amplifier Q4, 2SC735Y to the receiver antenna circuit from pin 16. #### (7) VFO UNIT (PB-1056) The VFO module board is installed in the VFO chassis. The VFO uses FET transistors Q1, 3SK22G and Q2, 3SK22G first buffer. Q3, 2SC372Y buffer provides isolation and amplification of the VFO signal. The VFO oscillation frequency is 8700 KHz to 9200 KHz and covers the tunable IF range of 500 KHz. Varactor diode D1, 1S145 in series with capacitor C14 is switched into the circuit by the clarifier switch and the relay contacts to shift the VFO frequency for receiver offset tuning. #### (8) CRYSTAL CONTROL UNIT (PB-1060A) In addition to VFO operation, the FT-101 features crystal controlled tranceive capability. The circuit features FET crystal
oscillator Q1, MK-10 for stable operation. Two crystals may be selected by the selector switch on the transceiver front panel. The oscillator board is located under the top cover and mounted directly on the VFO. Two of the crystal sockets in this board are not used. #### (9) RECTIFIER UNIT (PB-1076B) The rectifier unit PB-1076B is located under the main chassis in the power supply compartment, and delivers four different DC voltages. The power amplifier plate voltage (600 Volts DC) is supplied from the bridge connected silicon rectifiers D1 – D4 and D9 – D12. 300 Volts DC is also obtained from this circuit for the driver plate supply. 160 Volts DC and -100 Volts DC are obtained through D5 and D6. D5 supplies the final tubes screen grid voltage, and D6 is used for the bias supply. 10.5 Volt AC is rectified by D7 and D8 for the transistor supply voltage. #### (10) MAIN CHASSIS (Refer to Main Chassis Schematic) The main chassis contains the power supply, transmitter driver, final amplifier and other associated circuits. All sockets for plug-in modules are mounted on the main chassis. #### (A) POWER SUPPLY The power supply is designed to operate from either 100/110/117/200/220/234 volts AC or 12 volts DC (negative ground). Inserting the appropriate power plug into the rear panel receptacle makes the necessary connections to operate the supply in either mode, AC or DC. When the transceiver is operated from a 12 volt DC power source, transistors Q1 and Q2, DTG110B function as a low frequency oscillator to provide AC to the power transformer. Starting bias for the oscillator is obtained from divider resistors R3, R4 and R5. All of the tubes heaters and input voltage to the DC converter are supplied through the HEATER switch. #### (B) PRESELECT The preselect control adjusts three gang-tuned coils T101, T102 and T103. T101 tunes the receiver front end. T102 provides interstage tuning on receive as well as driver grid tuning on transmit. T103 tunes the driver plate circuit. T104, T105 and T106 are placed in the circuit when the band switch is in 80 and 40 meter band to obtain a proper impedance match for minimum distortion. T111 is connected to the heterodyne crystal X1-X11 through the band switch and delivers the signal from the secondary to the mixer stages. Diode switches are used in several locations for isolation of the circuits. D8 and D10, 1S1007 disconnect the feed-back loop of the IF signal to prevent oscillation in receive. D7 isolates the carrier signal from the circuit in SSB transmission. D11, 1S1007 prevents the carrier signal from entering the IF circuit when in the receive mode. With the heater switch in the "OFF" position, voltage is still supplied to the receiver section, which allows continuous reception at reduced power consumption levels. The high-voltage winding of the power transformer T11 is connected to a bridge-type solid state rectifier D1-D4 (10D1) to supply approximately +600 volts and +300 volts to the transmitter tubes. Output from the 120 volt tap is rectified by D5 and D6, 1S1942 to deliver +160 volts to the screen grids and -100 volts for the bias supply. During AC operation, T11 is energized by two primary windings. These windings can be connected in series for 200/220/234 volts and in parallel for 100/110/117 volts operation. The output from a high current winding of 10.5 volts is rectified by D7 and D8, 10D1 and is used to supply the transistorized stages. #### (C) FINAL AMPLIFIER The signal from the transmitter second mixer is fed to the grid of transmitter driver V1, 12BY7A where it is amplified to a level sufficient to drive the final linear amplifier V2 and V3, 6JS6A The signal appearing across T103 and T105 is coupled to the grids V2 and V3. Neutralization of the power amplifier is accomplished by feeding back a small amount of the output through TC27 to the bottom of T103/T105 combination. Final output from V2 and V3 is fed to the antenna. The output RF voltage is divided by C28 and C29, and is rectified by D4, 1S1007 to indicate relative output power when the meter switch is in the PO position. The ALC (automatic level control) voltage is obtained by D2 and D3, 1S1941 and controls the gain of the IF amplifier. POWER TRANSFORMER CONNECTIONS #### (11) METERING The meter circuit is designed to indicate signal strength in the receive mode. On transmit, the meter may be switch selected to indicate cathode current, relative Power Output, and automatic level control. The meter functions are automatically switched by means of relay contacts for transmit and receive modes. ALC meter readings are controlled by variations in grid current flowing in the final amplifier tubes. As the final amplifier drive is increased, due to modulation, a portion of this current flow is rectified and applied to the gate of MK-10 on PB-1078A. The meter then indicates the current flowing in MK-10 which is derived from the ALC control voltage. In the IC position, the meter is connected to the cathodes of final tubes in parallel with shunt resistor R12, and measures total cathode current of the tubes. In the PO position, the relative power output is indicated by the rectified DC current at the pi output circuit. The meter sensitivity is adjusted by potentiometer VR6 located on the rear panel. When the transceiver is in the receive mode, the AGC voltage developed by the signal is fed to the meter amplifiers Q4 and Q5 to provide a meter deflection proportional to input signal strength. The meter is calibrated in the customary "S" units. A meter indication of S-9 represents approximately 50 microvolts at the antenna terminals. CRYSTAL CALCULATIONS FOR CRYSTAL CONT-ROLLED TRANSCEIVER OPERATION WITH THE FV101 VFO OR THE FT-101 INTERNAL FIX OSCIL-LATOR, PB-1060A. The crystal holders accept standard HC-6/Utype crystals. All crystal frequencies must fall between 8,700 KHz and 9,200 KHz. A trimmer capacitor has been connected in parallel with each crystal to permit proper frequency adjustment. Adjustment of this trimmer will change the crystal frequency approximately 1 KHz. The correct crystal frequency for any desired operating frequency, may be determined by the following formula: $$Fx = (F1 + Fc) - Fo$$ Fx=(F1+Fc)-Fo, where Fx is the crystal frequency, Fo is the desired operating frequency, and the constant (F1+Fc) is taken from the table. #### Frequency Table (FI+Fc) | | | | Unit: KHz | |------|---------|---------|-----------| | BAND | LSB | USB | AM/CW | | 80 | 12701.5 | 12698.5 | 12699.3 | | 40 | 16201.5 | 16198.5 | 16199.3 | | 20 | 23201.5 | 23198.5 | 23199.3 | | 15 | 30201.5 | 30198.5 | 30199.3 | | 11 | 36201.5 | 36198.5 | 36199.3 | | 10A | 37201.5 | 37198.5 | 37199.3 | | 10B | 37701.5 | 37698.5 | 37699.3 | | 10C | 38201.5 | 38198.5 | 38199.3 | | 10D | 38701.5 | 38698.5 | 38699.3 | | | | | | #### For Example: Find the proper crystal for operation at 3900 KHz LSB on the 80 meter band. From the table find the constant (Fl + Fc) for LSB operation on this band. The constant is 12701.5, therefore Fx = 12701.5 - 3900 = 8801.5 KHz. #### CW FILTER INSTALLATION - Remove top cover of transceiver cabinet and locate printed circuit boards PB-1081C and PB-1080A. - Remove two screws holding PB-1081C to the Ushaped bracket. Remove two screws holding the Ushaped bracket to the shield plate, located between the two boards. - Remove PB-1081C from the chassis connector receptical. Gently, rock the circuit board out of the connector. - 4. Remove the two screws holding the shield plate and lift out of the cabinet. - Grasping the U-shaped brackets still attached to PB-1080A, gently, rock the circuit board out of the connector. - 6. With PB-1080A removed from the chassis, remove C-10 and C-15 (.01 uF) capacitors from board. Install XF-30C CW filter in position indicated using the nuts and lockwashers provided. Solder the four filter terminals to the board. - Re-install PB-1080A into socket, screw shield plate to chassis, and re-install PB-1081C into socket. Replace all attaching screws. This completes the CW filter installation. The filter provides a 600 Hz bandpass when the mode switch is placed in the CW position. Transicever alignment is not required for this installation. #### ALIGNMENT #### WARNING DANGEROUS VOLTAGES ARE PRESENT. USE EXTREME CAUTION WHEN WORKING ON THE TRANSCEIVER WITH COVERS REMOVED. DISCHARGE ALL CAPACITORS BY SHORTING TO GROUND WITH AN INSULATED SCREW DRIVER, ETC. #### CAUTION Never operate the transceiver in the transmit mode without a matched antenna or adequate dummy load. The power amplifier tubes and PI network components can be damaged if the transceiver is operated without the proper load termination. #### **GENERAL** The transceiver has been carefully aligned and tested at the factory and, with normal usage, should not require other than the usual attention given to electronic equipment. Service or replacement of a major component may require subsequent realignment, but under no circumstance should realignment be attempted unless the operation of the transceiver is fully understood, the malfunction has been analized and definitely traced to misalignment. Service work should only be performed by experienced personnel, using the proper test equipment. #### EQUIPMENT REQUIRED - RF Signal Generator: Hewlett-Packard Model 606A, or equivalent with one volt output at an impedance of 50 ohms and a frequency coverage to 30MHz. - (2) Vacuum Tube Voltmeter (VTVM): Hewlett-Packard Model 410B, or equivalent VTVM with an RF probe good to 40 MHz. - (3) Dummy Load: Waters Model 334A or equivalent 50 ohms non-reactive load rated at 300 watts average power. - (4) AF Signal Generator: Hewlett-Packard Model 200 AB, or equivalent. - (5) A general coverage receiver covering the frequency range from 3 to 30 MHz with a 100 KHz calibrator. #### 1. S-METER SENSITIVITY ADJUSTMENT Place the transceiver in the receive mode and connect a signal generator to the antenna terminal of the transceiver. Set the signal generator to
14200 KHz with an output of 50 uV. Tune the transceiver for maximum S-meter reading. The S-meter should read S-9. If S-meter adjustment is required, adjust VR2 on PB-1080A to obtain an S-9 reading. When the transceiver is tuned to 14200 KHz the 100 KHz crystal calibrator output will be approximately 50 uV or S-9 on the S-meter. #### 2. NOISE BLANKER THRESHOLD The operating level of the noise blanker is determined by the THRESHOLD control VR3 on PB-1080A. Counterclockwise rotation of the control increases the effectiveness of the blanker, however, extreme setting of this control reduces the receiver sensitivity. With the noise blanker in the "OFF" position, tune in a signal on any band that registers between S-8 and S-9. Note the S-meter change when the noise blanker switch is placed in the "ON" position. When the noise blanker level is adjusted properly, the meter should indicate a decrease of one (1) S-unit. If the change is greater or less than indicated, adjust VR3 to achieve the proper setting. Extremely strong signals may cause distortion on the derived signal due to mixing at the switching diode. This effect can be reduced by decreasing the Noise Blanker threshold control or by switching the Noise Blanker to "OFF". #### VOX ADJUSTMENT VOX controls are located on PB-1081C. These are VR1 VOX Gain, VR2 Delay, VR3 Relay Sensitivity and VR5 Antitrip Gain. Set the operation switch to the VOX position and turn the AF GAIN and MIC GAIN controls fully counter-clockwise. Slowly rotate the RELAY control (VR3) counterclockwise until the relay activates, then return the control carefully clockwise until relay releases. This release point is the proper setting for the RELAY sensitivity control. Set MIC GAIN control to the center of its travel. Speak into the microphone normally, adjust VOX control VR1 to just activate VOX relay. Tune in a signal and adjust the AF GAIN control to a comfortable listening level. Set the ANTITRIP control VR5 to the minimum point that will prevent the speaker output from tripping the VOX. BOTTOM VIEW Adjust the DELAY control VR2 for suitable release time. #### 4. CW SIDETONE LEVEL ADJUSTMENT CW sidetone level may be adjusted by rotating TONE-level potentiometer (VR4) located on PB-1081C. #### CARRIER BALANCE The transceiver should be allowed to reach operating temperature before making the carrier balance adjustment. Tune-up the transceiver for SSB operation using an antenna or dummy load. Turn the MIC GAIN control fully counterclockwise to remove all audio from the modulator stage. With the MODE switch set to either the LSB/USB positions, turn the "MOX-PTT-VOX" switch to the MOX position and adjust the carrier balance controls (VR1 and TC1) on PB-1078A for minimum PO meter reading. A more exacting balance may be obtained by tuning a receiver, having an S-meter, to the transmitted frequency. Adjust the balance controls for minimum S-meter reading while switching the MODE switch back and forth between the two sideband positions to obtain good carrier suppression for both sidebands. #### 6. ALC LEVEL ADJUSTMENT The ALC meter will require adjustment if when the METER switch on the front panel is set to the ALC position, the mode switch to USB, the "MOX-PTT-VOX" switch to MOX and the microphone gain to zero the ALC meter does not read 5. To adjust the meter, set the controls as follows: | MODE | .USB | | |-------------|-------|-----| | MIC GAIN | Fully | CCW | | MOX-PTT-VOX | .MOX | | If the meter reads other than 5 on the bottom scale, adjust the ALC control VR2 on PB-1078A for a meter indication of 5. Return the "MOX-PTT-VOX" switch to the PTT position. #### 7. VOLTAGE REGULATOR ADJUSTMENT Connect a VTVM DC probe between pin 13 of MJ-6 (PB-1079A) and ground. Adjust REG potentiometer VR3 for exactly 6 Volt reading on VTVM. #### 8. CLARIFIER ADJUSTMENT The transmitting and the receiving frequency will be in coincidence at the CLARIFIER contsol OFF position. If not, adjust potentiometer VR4 on PB-1079A. Also both transmit and receive frequencies coincide at the CLARIFIER control 0 position. If not, adjust the potentiometer VR4 located near the CLARIFIER control under the main chassis. #### 9. BIAS ADJUSTMENT The final amplifier bias must be checked to insure linearity and normal operating plate dissipation for the final tubes. Adjust the BIAS control VR2 on PB-1079A as follows; Set the transceiver to the receive mode and allow the transceiver to reach operating temperature. Set MODE switch to USB, METER switch to IC and the "MOX-PTT-VOX" switch to MOX position for transmit condition. The meter will indicate PA plate current. Idle plate current is 50 mA if the bias is correct. If the idle plate current is other than 50 mA, adjust the BIAS control for 50 mA. There is a little difference in the idle current between AC and DC operation. Adjust the idle current to 50 mA for each operation. #### 10. POWER OUTPUT METER ADJUSTMENT VR6, located on the transceiver rear panel adjacent to the antenna coax fitting, provides an adjustment for power output indication on the meter. This potentiometer should be adjusted to indicate 1/2 to 2/3 full scale meter deflection when the transmitter is producing full output power in the tune position. It should be noted that the meter indicates relative power output and is not the basis for determining actual power output. VR6 has been preset at the factory to read 1/2 to 2/3 full scale into a 52 ohm dummy load. The operator should not indiscriminately adjust VR6 into an unknown load or an antenna with high VSWR. #### 11. FINAL AMPLIFIER NEUTRALIZATION When replacing the final amplifier tubes, it may be necessary to reset the bias to give correct idle current and check neutralization. Using the procedure outline below will guarantee maximum output and long tube life. #### CAUTION HIGH VOLTAGES ARE PRESENT ON UNDERSIDE OF CHASSIS AND INSIDE OF FINAL COMPARTMENT. USE GREAT CARE WHILE MAKING ADJUSTMENTS WITH WIRING EXPOSED. - Connect a dummy load to antenna, and set meter to IC. - (2) Locate TC27 the neutralization variable capacitor shaft on the underside of the chassis near the driver stage band switch wafer, in the final amplifier section. - (3) Check final amplifier idle current in USB or LSB position and adjust as described before. - (4) Tune up the transceiver at 29 MHz, 10B or 10C - band with MODE switch at TUNE position, and advance the CARRIER control until meter IC reads 100 mA. - (5) Rotate PLATE tuning control and observe dip as indicated on the meter. If the dip is not prominent, reduce the loading control slightly for better indication. As the PLATE control is rotated the meter should rise equally and smoothly on either side of maximum dip indication. - (6) Determine which side of the dip rises abruptly. Set PLATE control slightly to this side of dip keeping the meter reading below 100 mA. - (7) Using nonmetallic tuning wand, rotate neutralization capacitor shaft very slightly in the direction which reduces the current shown on the meter. Repeat steps 6 and 7 until the meter indicates a smooth and equal rise on either side of the maximum dip point. The final compartment cover must be in place to supply the RF shielding required during the neutralization procedure. FINAL AMPLIFIER COMPARTMENT ## 12. ALIGNMENT OF TRANSMITTER MIXER/DRIVER AND RECEIVER FRONT END STAGES The final amplifier bias adjustment must be set to 50 mA before extensive operation of the transmitter is attempted. It is assumed that the signal generating stages of the transceiver are functioning properly. Use the internally generated signal of the transceiver to align the transmitter mixer and driver stages and the RF signal generator to align the receiver front end stage. | BAND | COIL | CAPACITOR | TRIMMER | |------|------------|-----------|---------| | 80 | TIOIA+TIO4 | C4I 330PF | TCII | | 40 | HOIATHOT | C42 50PF | TC12 | | 20 | | C43 70PF | TC13 | | 15 | TIOIA | C44 20PF | TC14 | | 10 | | _ | TCI5 | RF INPUT CIRCUIT - (1) Connect the 50-ohm dummy load to the antenna Jack. Tune up the transceiver at 30,000 KHz (BAND 10D, VFO at 30,000 KHz) as follows; Set the BAND switch to 10D, the VFO to 30,000 KHz, PRESELECTOR control to the upper end of 10 and 11 meter segment and the OPERATION switch at MOX. Advance the CARRIER control and tune the final amplifier. Maintain the resonant plate current (IC) at 100 mA with the CARRIER control. Set trimmer TC5 to the mid-capactance position and adjust the slugs of T102 and T103 for maximum output into the dummy load. Reduce the transmitter output to zero with the CARRIER control. - (2) Set the OPERATION switch to the receive mode, RF and AF GAIN control to maximum, CLARIFIER control to "OFF", and NOISE BLANKER to "OFF". Do not change the VFO setting and PRESELECTOR control setting set up in step 1. Tune the RF signal generator to 30,000 KHz and adjust it for approximately 1,000 Hz beat note. Use just enough signal generator output (approximately 1 microvolt for an aligned unit) to keep from developing AGC voltage (no S-meter indication). Set trimmer TC15 to the mid capacitance position. Adjust a slug of T-101 for maximum audio output without developing AGC voltage. (3) Set the BAND switch at 10A, the VFO at 28,000 KHz and the "MOX-PTT-VOX" switch at MOX. Advance the CARRIER control and tune the final amplifier. Maintain the meter reading at 100 mA with the CARRIER control as described in step 1. Set the PRESELECTOR control to the lower end of 10 and 11 meter segment and adjust trimmer TC5 for maximum output at the dummy load. Reduce the transmitter output to zero with the CARRIER control. (4) Set the OPERATION switch to the receive mode and without changing the VFO or PRESELECTOR control settings, tune the RF signal generator to 28,000 KHz and obtain 1,000 Hz beat note. | | GRID | CIF | RCUIT | | PLATE CIRCUIT | | | | | | | |------|-----------|---------------------------------|--------|-----------|---------------|------------|---------|--|--|--|--| |
BAND | COIL | CAP | ACITOR | TRIMMER | COIL | CAPACITOR | TRIMMER | | | | | | 80 | TI02+TI06 | TI02+TI06 | | C 9 270PF | TC6 | | | | | | | | 40 | 110211100 | | | 1105+1105 | CI06 20PF | T C 7 | | | | | | | 20 | | C6 70PF T C3 T 102 — T C4 T 103 | | C10 50PF | T C 8 | | | | | | | | 15 | T 102 | | | TC4 | T103 | CI07 OPF | T C 9 | | | | | | 10 | | CI26 | 5 5PF | TC5 | | | _ | | | | | 12BY7A TUNING CHART Control the signal generator output and adjust trimmer TC15 for maximum audio output as described in step 2. - (5) Repeat step 1, 2, 3 and 4 to peak out the coil adjustments for the 10 meter band. - (6) Set the BAND switch to 15, the VFO to 21,000 KHz and the PRESELECTOR to the lower edge of the 15 meter segment. Tune up the transceiver to 21,000 KHz as described above. Adjust trimmers TC4 and TC9 for maximum transmitter output into the dummy load. - (7) Set the OPERATION switch to the receive mode, and without changing the VFO or PRESELECTOR settings. Tune the RF signal generator to 21,000 KHz and obtain the 1,000 Hz beat note. Adjust trimmer TC14 for maximum audio output as described in step 2. - (8) Repeat the procedures given in step 6 and 7 on the 20 meter band. The trimmer TC3 and TC8 are used for maximum transmitter output and TC13 for maximum audio output in receive. - (9) Set the BAND switch at 80, VFO at 4,000 KHz, and the PRESELECTOR at 12 o'clock position. Set TC1 and TC6 at the mid-capacitance point. Tune the transceiver to 4,000 KHz and adjust T105 and T106 for maximum transmitter power output into the load. - (10) Set the OPERATION switch to the receive mode, and without changing the VFO or PRESELECTOR settings, tune the RF signal generator to 4,000 KHz and obtain a 1,000 Hz beat note. Set TC11 to the mid-capacitance point. Adjust T104 for maximum audio output as described in step 2. - (11) Set the PRESELECTOR at the lower edge of the 80 meter segment, VFO at 3,500 KHz, and adjust TC1 and TC6 for maximum transmitter power output into the dummy load. - (12) Set the OPERATION switch to the receive mode, - and without changing the VFO or PRESELECTOR settings, tune the RF signal generator to 3,500 KHz and obtain a 1,000 Hz beat note. Adjust TC11 for maximum audio output as described in step 2. - (13) Repeat step 9, 10, 11, and 12 to peak out the coil adjustments for 80 meter bands. - (14) Set the BAND switch to 40, VFO at 7,000 KHz and the PRESELECTOR to the lower edge of the 40 meter segment. Adjust TC2 and TC7 for maximum transmitter power output into the dummy load. - (15) Set the OPERATION switch to the receive mode, and without changing the VFO or PRESELECTOR settings, tune the RF signal generator to 7,000 KHz and obtain a 1,000 Hz beat note. Adjust TC12 for maximum audio output. ALIGNMENT CAPACITORS #### 13. HETERODYNE CRYSTAL OSCILLATOR ALIGN-MENT The heterodyne crystal oscillation injection may be checked in the following manner. Connect the VTVM RF probe to the local oscillator test point. Injection is normal if the injection voltage measures 0.3 Volt RMS on all bands. If not, alignment is required. Set the BAND switch at 10D, TC24 at 1/3 capacitance position, and adjust T111 for 0.3 Volt RMS reading on VTVM. Then adjust TC23, TC22, TC21....., TC17 and TC16 for each of the band to read 0.3 Volt RMS on VTVM. | BAND | NO. | TUNING CAPA | ACITOR | CRYSTAL FREQUENCY | |------|-----|-------------|--------|-------------------| | 80 | X 1 | C45 300PF | TC16 | 9.52 MHz | | 40 | X 2 | C46 150PF | TC17 | 13.02 MHz | | 20 | Х З | C47 50PF | TC18 | 20.02 MHz | | 15 | X 4 | _ | TC19 | 27.02 MHz | | 11 | X 5 | _ | TC20 | 33.02 MHz | | 10A | X 6 | _ | TC21 | 34.02 MHz | | 10B | X 7 | _ | TC22 | 34.52 MHz | | 10C | X 8 | _ | TC23 | 35.02 MHz | | 10D | X 9 | _ | TC24 | 35.52 MHz | | WWV | X10 | C48 100PF | TC25 | 16.02 MHz | | AUX | X11 | | TC26 | _ | #### LOCAL OSCILLATOR TUNING CHART LOCAL OSCILLATOR TUNING CIRCUIT #### 14 TRAP COIL ALIGNMENT T107 is used to eliminate the direct-feed-through interference at the IF frequency, 5,920 KHz. Set the transceiver at 7,100 KHz LSB in receive mode and tune the preselector. Set the RF signal generator to 5,920 KHz and increase the signal generator output until an audio beat note is heard. Adjust T107 for minimum audio output. #### CAUTION Continuous full output for more than 10 seconds may result in final tube destruction. T113 on PB-1084C is used to eliminate spurious radiation on the 20 meter band. For alignment, tune the transceiver to maximum output at 14,350 KHz in the tune position. Measure the spurious radiation, by using the S-meter of another receiver tuned to 14,520 KHz where a spurious signal can be heard. Adjust T113 for minimum S-meter reading without decreasing the power output of the transceiver. T114 located on the main chassis near the relay RL1 is used to eliminate spurious radiation on the 10 m band. For alignment, tune the transceiver to maximum output at 28,750 KHz in the tune position. Measure the spurious radiation by using the S-meter of another receiver tuned to 28,160 KHz where the spurious signal can be heard. Adjust T114 for minimum S-meter reading without decreasing the power output of the transceiver. T115 located on the printed circuit board near the VFO unit is used to suppress carrier oscillator feed-through. Tune the transceiver to any frequency and load it to full output. Reduce the microphone gain to zero and place the mode switch in the USB position. Adjust T115 for minimum S-meter reading on the receiver. Measure the signal radiated using the S-meter of another receiver tuned to the USB signal of the transceiver. Adjust T115 for minimum S-meter reading on the receiver. VOLTAGE CHART | - | | , | | | | |----------|----------|-----------|---|--------|--------------|-------|--------|--------|------|-----------------|------|----------------|---------------|-------|--------|----------|------------------|--------------|----------------------------|---|------|------|-----|---|--| | | 9 | - | Ш | 1 | ١ | 1 | I | | 1 | | 1 | 1 | | 1 | ١ | 1 | 1 | 1 | 1 | Ш | ١ | 1 | 1 | 1 | 07 07 | | | | œ | Ш | 1 | 1 | ١ | 1 | ١ | I | ١ | 1 | 1 | 1 | 1 | ١ | ١ | 1 | ١ | 1 | Ш | ı | | I | 1 | ELS 7 | | | | ⊢ | Ш | 1 | 1 | 1 | ١ | - | ш | 1 | I | 1 | 1 | 0.06 | 1 | 1 | 1 | ١ | 1 | 1 | 1 | 1 | 1 | 1 | LEVI | | | 5 | œ | Ш | I | 1 | 1 | 1 | _ | Ш | · · | - | 1 | | - | 1 | 1 | 1 | ١ | 1 | 1 | 1 | ı | 1 | | R.M.S.
OUTPUT
SIGNAL I | | Ш | | ⊢ | ш | Ш | | 1 | 1 | ш | | ı | | 1 | Ш | 1 | | - | 1 | - | 1 | ш | Ш | Ш | Ш | - | T: TRANSMIT
VOLTS R.M.S
ATOR OUTPU
ARE SIGNAL | | VOLTAGE | 4 | <u>~</u> | ш | Ш | 1 | 1 | - | ш | - | - | | 1 | Ш | - | 1 | - | 1 | 1 | | Ш | ш | Ш | ш | - | R:RECEIVE, T:TR JNIT ARE IN VOLT. SIGNAL GENERATOR IE COLUMN T ARE | | . 10 N | | - | ш | 1 | 1 | | 0 | 1 | Ш | | 1 | 0.0 | 1 | - | - | ш | 0.06 | - | 0.03 | 1 | | | | Ш | R. RECEIVE, JIT ARE IN IGNAL GENE COLUMN | | | 3 | <u>~</u> | ш | 1 | | | 9. | 1 | Ш | 1 | 1 | 3180
7008 O | 1 | ·
 | | Ш | 3180
7808 | 1 | 3180
7308 ^{O.} | | | | | Ш | ND: 20M, R:RECEIVE, T:TRANSMIT
IT ANY UNIT ARE IN VOLTS R.M.S
DB ARE SIGNAL GENERATOR OUTPU
UNDER THE COLUMN T ARE SIGNAL | | Я.
Н. | | | | '
Ш | - | Ш | 0 | ı
Ш | 1 | Ч | | E 318 | 0.08 | ' | 1 | | 4 31 | _ | E 73 | ' | 1 | | ' | - | ANY ANY ARE | | | 2 | - | Ш | | 00 | | - 0.01 | | - | | - | | | | - | Ш | 0.0 | 0.0
0.0 | | | - | - | 1 | - | 15 2 2 | | | | 2 | Ш | Ш | 3180
790B | | 1 | ш. | - | | - | Ш. | 0.08 | ш. |
 - | ш. | 3 5720
3 66DB | 5720
56DB | 4 | Ш | | - | 1 | - | E E S | | | _ | - | Ш | Ш | Ю | 0 | | - | Ш | 0 80 | - | | N 0 | | 0 | - | 3 0.3 | - | 0 | Ш | - | | 1 | - | MODE: USB,
VALUES W
VALUES W
PRODUCE
VALUES GI | | | | <u>cc</u> | Ш | Ш | М | 2 | 1 | | | , 14250
46DB | - | | 14250
46DB | | | | 0 | 1 | 5720
66DB | Ш | | | 1 | - | M V V V V V V V V V V V V V V V V V V V | | | 9 | - | Ш | -55 | 0 | -3.5 | -140 | 17 | 2.7 | 2.7 | 0 | 1.5 | 2.5 | 13.0 | 6.0 | 12.5 | 0 | 0 | 0 | Ш | 1 | 1 | 1 | 1 | | | | | <u>~</u> | Ш | -70 | 8 - | -20 | -150 | 2 | 2.7 | 0.6 | 12.5 | 0 | 2.5 | 13.5 | 6.0 | 13.0 | 0 | 0 | 0 | Ш | 1 | | 1 | 1 | | | | 5 | ⊢ | Ш | 0 | 0.7 | 8.5 | 6.0 | 0 | Ш | 0 | 0 | 12.5 | 0 | 0.3 | 0 | 0.3 | 1 | 1 | | | 1 | | ١ | 1 | | | | ۵, | œ | Ш | 0 | 0.7 | 8.5 | 6.0 | 0 | Ш | 0 | 0 | 13.0 | 0 | 9.9 | 12.5 | 12.5 | - | 1 | 1 | 1 | 1 | | 1 | 1 | | | E | | - | Ш | Ш | 0 | 0 | 0 | Ш | 0 | 0 | 9.0 | 5. | Ш | 10.5 | 0 | 6.0 | 12.5 | 12.5 | 0 | Ш | Ш | Ш | Ш | 0 | | | TAG | 4 | ۳ | Ш | Ш | 0 | 0 | 0 | Ш | 0 | 0 | 0.0 | 5. | Ш | 0 | 0 | 6.0 | 13.0 | 13.0 | 0 | Ш | ш | Ш | ш | 0 | | | VOL | | - | Ш | 0 | 12.5 | 0 | 0 | 0 | ш | 5. | 0.0 | 0.35 | 12.5 | 0.7 | 13.0 | ш | | 3.0 | 0 | 0 | 12.5 | 0 | 6.0 | Ш | | | D.C. | 3 | ۳ | ш | 0 | 13.0 | 0 | 0 | 0 | ш | 0 | 0.6 | 6.5 | 13.0 | 0.7 | 8.0 | Ш | 0 | 3.0 | 0 | 0 | 13.0 | 12.5 | 0.9 | ш | D.C. | | | | ⊢ | Ш | Ш | 0 | Ш | 8.5 | Ш | 12.5 | ш | 0 | ш | 0 | Ш | 1.5 | ш | 12.5 | 12.5 | ш | Ш | - | | 1 | ı | T: TRANSMIT | | | 2 | ۳ | ш | ш | 0 | Ш | 5 | ш | 13.0 | ш | 12.0 | ш | 0 | ш | 0 | ш | 13.0 | 13.0 | ш | ш | 1 | 1 | | 1 | N 7: T.R. | | | | - | Ш | ш | 6.0 | 0.5 | 5.5 8 | 6.0 | ш | 0 | 13.0 | <u>ا</u> | 12.5 | 0 | 0 | 5 | 0 | ا
ای | 12.5 | ш | 1 | | 1 | | NE, | | | - | <u>~</u> | ш | ш | 6.0 | 0.5 0 | 5.5 | 6.0 | ш | 0 | 8.0 | 0 | 13.0 12 | 12.5 | 12.0 | 13.0 12. | 0 | 0 | 13.0 12 | ш | | 1 | 1 | 1 | VALUES ARE
R:RECEIVE, | | | Σ | | | 2
E | 3 | | | | | | 8 | 0 | | 12 12 | 13 12 | 4 | 2 | 9 | 17 13 | 8 | 6 | 20 | 2 - | 2 | > œ | | | ≥/ | PN | _ | . 4 | 117 | 4 | 5 | Θ | 7 | Φ | 0, | - | = | _ | _ | _ | _ | _ | _ | _ | _ | 2 | N | 2 | | ## RESISTANCE CHART | M.I | I | | 1 | | 1 | T | |-------------------|-----|------|----------|----------|-----|------------| | MJ _{NO.} | ı | 2 | 3 | 4 | 5 | 6 | | - 1 | E | E | Е | E | E | E | |
2 | E | Ε | 150 | E | 0 | 10 K | | 3 | 300 | 0 | 10 | 0 | | 4 K | | 4 | 3K | E | ∞ | | 10K | IOK | | 5 | 300 | IOK | 350 | ∞ | 200 | 30 K | | 6 | 200 | Ε | ΙK | Е | 5 | 50K | | 7 | Ε | 10 | Ε | 0 | E | 3 K | | 8 | 0 | Ε | 0 | ΙK | 5 K | 6 K | | 9 | 3 K | 200 | IOK | IOK | ΙK | 200 | | 10 | | Ε | 3 K | 50K | 10 | 0 | | 1 1 | 20 | 00 | 10 | Ε | 50K | 3K | | 12 | 200 | Ε | ΙK | 100 | 3 K | 10 | | 13 | 200 | 0 | 3 | ∞ | 200 | 200 | | 14 | 10 | Ε | Ε | 200 | 500 | 10 | | 15 | 0 | 100 | 0 | 10 | _ | 50K | | 16 | 0 | 1 00 | ∞ | 10 | - | 0 | | 17 | 100 | Ε | ∞ | | _ | ∞ / | | 18 | Е | E | 0 | Ε | _ | Ε | | 19 | _ | _ | 10 | Ε | _ | _ | | 20 | _ | _ | 200 | _ | _ | _ | | 2 | _ | _ | 200 | _ | _ | _ | | 2 2 | | _ | Ε | _ | _ | _ | VALUES ARE IN OHMS. #### Order Instruction; Parts number is independent for each unit, except T-transformers and T-inductors, therefore it is requested to specify parts number together with unit classification as following example. No. 1 RF Unit R1 100K ohm 1/4 W ** VALUE IS NOMINAL | (No. 1 RF UNIT) | PRINTED BOARD | PR-1080A | |--|-------------------------------|--| | PRINTED CIRCUIT BOARD PB-1077B | Q-FET, TRANSI | | | Q-FET & TRANSISTOR | 1 | MK-10F | | 1 3SK39O | 2 | 2SC784R | | 3, 5 2SC372Y | 6 | 2SC784K
2SC372Y(2SC828P) | | 4 2SC784R | 4, 5 | 2SC828Q | | RL-RELAY | 3 | | | | | CA – 3053 | | 1 SM-12 | D-DIODE | 101000 | | D-DIODE | 2, 4, 5, 6, 7, 8, 10, 11, 12, | 181007 | | 1 1S1007 | 13, 14, 15, 16 | | | L-INDUCTOR | 3, 9 | 1S1941 | | 1 250μ H | L-INDUCTOR | | | C-CAPACITOR | 1, 3, 4, 5, 6 | 250µ H | | DIPPED MICA | T-INDUCTOR | | | 1, 11 500WV 100P±10% | 108 | IF COIL | | 6 500WV 50P \pm 10% | 109 | DET COIL | | 2, 8, 9, 10, 12, 14, 15, 16 CERAMIC DISC | VR-POTENTIOME | TER | | 50WV $0.01\mu + \frac{100\%}{0}$ | 1 (BALANCE) | V101KR-1 B500Ω | | 4 50WV 0.001μ | | V101KR B500Ω | | 7 50WV $0.047\mu + \frac{100\%}{0}$ | 3 (NB) | V101KR B10KΩ | | R-RESISTOR | XF-CRYSTAL FI | | | 1, 5, 16, 17 $\frac{1}{4}$ Wor $\frac{1}{2}$ W100K $\Omega \pm 10\%$ | 1 (2.4KHz) | XF-30A | | $\frac{1}{4} \text{Wor} \frac{1}{2} \text{W} \frac{100 \text{K} \Omega}{2} \pm \frac{10}{9}$ | 2 (CW) | XF = 30A
XF = 30C (OPTION) | | $\frac{2}{3}$ $\frac{1}{4}$ Wor $\frac{1}{2}$ W 22 K Ω \pm 10% | C-CAPACITOR | AT - SUC (OPTION) | | 7, -7, 27, 0 | | MVLAD | | | 35 | MYLAR | | 6 $\frac{1}{4}$ Wor $\frac{1}{2}$ W2.2K $\Omega \pm 10\%$ | | 50WV $0.47\mu \pm 20\%$ | | 7, 13 $\frac{1}{4} \text{Wor} \frac{1}{2} \text{W470} \Omega \pm 10\%$ | 3, 30, 31 | DIPPED MICA | | 8, 12 $\frac{1}{4}$ Wor $\frac{1}{2}$ W15K $\Omega \pm 10\%$ | | 500WV $100P \pm 10\%$ | | 10 $\frac{1}{4} \text{Wor} \frac{1}{2} \text{W} 220\Omega \pm 10\%$ | 6, 17, 23 | 500WV 470P \pm 10% | | 11 $\frac{1}{4} \text{Wor} \frac{1}{2} \text{W} 3.3 \text{K}\Omega \pm 10\%$ | 21, 28 | 500WV $150P \pm 10\%$ | | 14 $\frac{1}{4} \text{Wor} \frac{1}{2} \text{W} 100\Omega \pm 10\%$ | 39 | 500WV 5P ± 10% | | 15 $\frac{1}{2}$ W $560\Omega \pm 10\%$ | | ELECTROLYTIC | | 18 $\frac{1}{4}$ Wor $\frac{1}{2}$ W68KΩ ± 10% | 36, 42 | 16WV 10µ | | (No. 2 MIXER UNIT) | 41 | 16WV 100μ | | PRINTED CIRCUIT BOARD PB-1082B | 7, 13, 14, 20, 22 | CERAMIC DISC | | PRINTED CIRCUIT BOARD PB-1084C | 25, 45, | 50WV 0.047µ | | | 32, 33, 34 | 50WV 0.001μ | | Q-FET & TRANSISTOR | | , | | 1 3SK39Q | 4, 5, 8, 9, 10, 11, 12, 15, | 50WV 0.01μ | | 2 2SC372Y | 16, 18, 19, 24, 26, 27, 29, | | | TC-TRIMMER CAPACITOR | 37, 38, 40, 43, 44, 46, 47, | | | 1, 2, 3 1ZW50P(MAX) | R-RESISTOR | | | L-INDUCTOR | 28 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 470 KΩ ± 10% | | 1, 3 25T(BPF) | 3, 22, 25 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W100K $\Omega \pm 10\%$ | | 2 40T(BPF) | 4, 7, 17, 20 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 100 $\Omega \pm 10\%$ | | 4 250μH | 5, 18 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W2.2K $\Omega \pm 10\%$ | | T-INDUCTOR | 6, 30 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W1.5KΩ ± 10% | | 112A MIXER COIL | 31 | ½ Wor½ W220Ω ± 10% | | 113 14MHz TRAP COIL | 8, 9 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W5.6KΩ ± 10% | | VR-VARIABLE RESISTOR | 12, 13, 15, 26, 32 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 3.3 KΩ ± 10% | | 1 SR19R001 B2.2KΩ | 14 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W27K $\Omega \pm 10\%$ | | C-CAPACITOR | 16, 19, 23, 33 | ½Wor½W1KΩ ± 10% | | DIPPED MICA | 21, 34, 35, 36 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W10K $\Omega \pm 10\%$ | | | 24, 27 | $\frac{1}{4} \text{Wor} \frac{1}{2} \text{W} 470 \Omega \pm 10\%$ | | | 29 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 4.7 K $\Omega \pm 10\%$ | | $\frac{2}{600}$ $\frac{500WV}{100P} + \frac{10\%}{100P}$ | | $\frac{74 \text{ W O F}_{22} \text{ W 4.7 K} \Omega}{100 \Omega} \pm 10\%$ | | 6 500WV 100P±10% | 10, 11 | 72 W 10052 ± 10% | | CERAMIC DISC | / | A E LINITE | | 3, 4, 5, 7, 10, 15 50WV $0.01\mu \pm \frac{100\%}{0.01}$ | | AF UNIT) | | 9 50WV $0.047\mu \pm \frac{100\%}{0}$ | PRINTED BOARD | PB-1081C | | FEED THRU BYPASS | Q-EFT, TRANSI | | | 12, 13, 14 500WV $1000P = 0.00\%$ | 1 | MK-10F | | R-RESISTOR | 2, 3, 8 | 2SC372Y (2SC828P) | | J $\frac{1}{4}$ Wor $\frac{1}{2}$ W27K $\Omega \pm 10\%$ | 5 | MK-1D | | | 6, 7 | 2SC373 | | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 3.3K $\Omega \pm 10\%$ | | | | 2 $\frac{1}{4}$ Wor $\frac{1}{2}$ W3.3KΩ ± 10%
3 $\frac{1}{4}$ Wor $\frac{1}{2}$ W1KΩ ± 10% | | | | 3 $\frac{1}{4} \operatorname{Wor} \frac{1}{2} \operatorname{W1K} \Omega \pm 10\%$ | 4 (IC) | TA - 7042M | | 3 ½ Wor½ W1KΩ ± 10%
4, 8, 11 ½ Wor½ W15KΩ ± 10% | | TA-7042M
STK401 | | 3 ½ Wor½ W1KΩ ±10%
4, 8, 11 ½ Wor½ W15KΩ ±10%
5, 6, 10 ½ Wor½ W100Ω ±10% | 9 (IC) | | | 3 ½ Wor½ W1KΩ ±10%
4, 8, 11 ¼ Wor½ W15KΩ ±10%
5, 6, 10 ½ Wor½ W100Ω ±10%
7 ⅓ Wor½ W22KΩ ±10% | 9 (IC)
D-DIODE | STK401 | | 3 ½ Wor½ W1 KΩ ± 10% 4, 8, 11 ¼ Wor½ W15 KΩ ± 10% 5, 6, 10 ¼ Wor½ W100Ω ± 10% 7 ¼ Wor½ W22 KΩ ± 10% 12 ½ Wor½ W00 KΩ ± 10% | 9 (IC) | STK401
1S1941 | | 3 ½ Wor½ W1KΩ ± 10% 4, 8, 11 ¼ Wor½ W15KΩ ± 10% 5, 6, 10 ½ Wor½ W100Ω ± 10% 7 ⅓ Wor½ W22KΩ ± 10% | 9 (IC)
D-DIODE | STK401 | | | | 110 | MOD, COIL | |------------------------------|---|----------------------------|---| | | | VR-POTENTIOME | | | VR-POTENTIOME | TED | 1 (TX BM)
2 (ALC) | V101KR-B500Ω
V101KR-B5KΩ | | | E)V160KRZ—1B10KΩ | TC-TRIMMER | V101KK-B3K52 | | 2 (DELAY) | V160KRZ-1B2MΩ | 1 | 1ZW50P (MAX) | | 3 (RELAY) | V101KR B 1KΩ | 2, 3, 4 | 1ZW20P (MAX) | | 4 (ANTI) | V101KR B 10KΩ | C-CAPACITOR | | | C-CAPACITOR | | 5, 10 | DIPPED MICA | | 14 | DIPPED MICA | | 500WV 100P \pm 10% | | | 500WV 100P $\pm 10\%$ | ₩ 3 | 500WV 130P±10% | | | ELECTROLYTIC | 4 | 500WV 150P \pm 10% | | 2, 15, 17, 18, 28 | 16WV 10μ | 35 | 500WV $10P \pm 10\%$ | | 4, 16, 39, 41 | 16WV 100μ | 14 | 500WV 200P ± 10% | | 5, 6, 7, 10, 13, 19, 31, 34, | $16WV$ 1μ | * 19, 27, 32
20, 28, 30 | 500WV 40P ± 10%
500WV 50P ± 10% | | 8, 38, 37, 44, 45, 46 | 16WV 22µ | 21 | 500WV 50P ± 10%
500WV 300P ± 10% | | 36 | 16WV 47 _{\mu} | 23 | 500WV | | 12 | 16WV 220μ | 15 | ELECTROLYTIC | | 29, 35, 21 | MYLAR | | 16WV 100µ | | | 50WV $0.1\mu \pm 20\%$ | 12 | MYLAR | | 30 | 50WV $0.0022\mu \pm 20\%$ | | 50WV $0.22\mu \pm 20\%$ | | 11 | PLASTIC FILM | 2, 8, 9, 13, 16, 17 | CERAMIC DISC + 100% | | | 50WV $2.2\mu \pm 20\%$ | 18, 24, 26, 29, 33 | $50WV 0.01\mu - 0$ | | 1, 9, 20, 25, 26, 27, 42 | MYLAR | 6, 11, 22, 25, 34 | 50WV $0.047\mu \pm \frac{100\%}{0}$ | | 2 22 24 40 | $50WV \qquad 0.01\mu \pm 20\%$ | 31 | 50WV $0.001\mu \pm \frac{100\%}{0}$ | | 3, 23, 24, 40 | 50WV $0.047\mu \pm 20\%$ | R-RESISTOR | 1/337 - 1/3373 50 | | 32, 33, 43 | 50WV $0.022\mu \pm 20\%$
50WV $0.001\mu \pm 20\%$ | 1, 3 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W150 $\Omega \pm 10\%$ | | R-RESISTOR | 50WV $0.001\mu \pm 20\%$ | 2, 21, 30 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W470 $\Omega \pm 10\%$
$\frac{1}{4}$ Wor $\frac{1}{2}$ W100K $\Omega \pm 10\%$ | | 1, 3, 14, 19, 26, 27, | ½ Wor½ W4.7KΩ ± 10% | 12, 15, 16, 22, 25, 26, 29 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 4.7K $\Omega \pm 10\%$ | | 2, 33, 35 | $\frac{1}{4}$ Wor½ W47KΩ ± 10% | 6 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W2.2K $\Omega \pm 10\%$ | | 4, 28 | ½ Wor½ W5.6KΩ ± 10% | 7 | $\frac{1}{4}$ Wor½ W33KΩ ± 10% | | 5, 8, 15, 36, | ½Wor½W1KΩ ± 10% | 8 | $\frac{1}{4}$ Wor½ W3.3KΩ ± 10% | | 6, 34 | ½Wor½W3.3KΩ ± 10% | 9, 10, 11, 14, 24, 28 | ½ Wor½ W1KΩ ± 10% | | 7 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W22K $\Omega \pm 10\%$ | 13, 17, 23, 27 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W22K $\Omega \pm 10\%$ | | 9, 10, 32, 37, 38, 39 | ½Wor½W10KΩ ± 10% | 18 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W100 $\Omega \pm 10\%$ | | 11, 18 | ½Wor½W15KΩ ±10% | 19 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W180 $\Omega \pm 10\%$ | | 12 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W330 $\Omega \pm 10\%$ | 20 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W1.5K $\Omega \pm 10\%$ | | 13 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W100 $\Omega \pm 10\%$ | (NO. 6 REG & | | | 16, 17, 30
41 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 470 $\Omega \pm 10\%$
$\frac{1}{4}$ Wor $\frac{1}{2}$ W 82 $\Omega \pm 10\%$ | PRINTED BOARD | PB-1079A | | 20, 31 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W 2.2K $\Omega \pm 10\%$ | Q-TRANSISTOR
1, 2, 3, 4 | 2SC735Y (2SC367Y) | | 21 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W1.5K $\Omega \pm 10\%$ | 5 | 2SC697B, D, E | | 23, 24 | $\frac{1}{2}$ W 3.3M $\Omega \pm 10\%$ | 6 | 2SC372Y (2SC828P) | | 25 | ½Wor½W6.8KΩ ± 10% | D-DIODE | 2505721 (2500201) | | 29 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W33KΩ ± 10% | 1, 4, 5 | 1S1941 | | | | 2 | 1S993 | | 40 | ½Wor½W220Ω ±10% | 3 | 1S334 | | 22 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W470K $\Omega \pm 10\%$ | X-CRYSTAL | | | 42 | ¼ Wor½ W 4.7Ω ± 10% | 1 | HC/13U 100KHz | | | | L-INDUCTOR | | | | | 1, 2 | 4MH |
| | | VR-POTENTIOME | | | | | 1 (MULTI)
2 (BIAS) | V101KR B 10KΩ
V160KRZ−1B10KΩ | | 50 | ½ Wor½ W27KΩ ± 10% | 3 (VOLT) | V100KRZ-1B10KΩ | | 51 | $\frac{1}{2}$ W 5.6M $\Omega \pm 10\%$ | 4 (FREQ, ADJ) | V101KR B 1KΩ | | (NO. 5 MOD & | | TC-TRIMMER | 101111 1300052 | | PRINTED BOARD | PB-1078A | 1 | 1ZW50P (MAX) | | Q-FET & TRANSI | STOR | C-CAPACITOR | | | 1 | MK-10D | 1 | DIPPED MICA | | 2, 4 | 2SC372Y (2SC828P) | | 500WV $250P \pm 10\%$ | | 3, 5, 6 | 2SC372Y | 2 | 500WV 100P ± 10% | | D-DIODE | 151007 | 3 | 500WV 2000P ± 10% | | 1, 2, 3, 4
X-CRYSTAL | 1S1007 | 5, 6, 21 | 500WV 30P \pm 10% | | 1 (USB) | HC/6U 3178.5KHz | 7, 8 | 500WV $1000P \pm 10\%$
500WV $40P \pm 10\%$ | | 2 (LSB) | HC/6U 3181. 5KHz | 20 | $500WV$ $40P \pm 10\%$ $500WV$ $50P \pm 10\%$ | | 3 (CW) | HC/6U 3179. 3KHz | 10, 11 | ELECTROLYTIC | | L-INDUCTOR | _, | | 250WV 20μ | | 2, 8, 9 | 250µH | 12, 13 | 150WV 20µ | | 3, 4, 6, 7 | 22µH | 17, 18 | 25WV 470μF | | | ,, | | | | 5
T-INDUCTOR | 10μH | 14, 15, 16, | 16WV 1000µ | | 4, 19 | CERAMIC DISC | 1 2 4 | 50WV 0,01μ | |--------------------------|---|------------------------------|---| | 4, 19 | CERAMIC DISC
50WV 0.01\(\mu\) - 0% | 1, 2, 4
R-RESISTOR | 30 W V 0,01μ | | R-RESISTOR | 30W V 0.01µ = 0 | 1, 5 | ½ Wor½ W100KΩ ± 10% | | | ½Wor½W10KΩ ±10% | 2 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W56 $\Omega \pm 10\%$ | | 1, 8, 13, 15, 24
2, 9 | $\frac{74}{4}$ Wor $\frac{7}{2}$ W 10KΩ ± 10% | 3 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W $\frac{1000}{2}$ $\pm \frac{10}{9}$ | | | | | | | 3, 10 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W100 $\Omega \pm 10\%$ | (NO. 9 RE | | | 4, 7, 11 | ½ Wor½ W4.7KΩ ± 10% | PRINTED BOARD | PB-1076B | | 5 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W27K $\Omega \pm 10\%$ | D-DIODE | | | 6 | ⅓ Wor½ W33KΩ ± 10% | 1, 2, 3, 4, 9, 10, 11, 12 | 10D10 | | 12 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W1.5K $\Omega \pm 10\%$ | 5, 6 | 1S1942 | | 14 | ½ Wor½ W47KΩ ± 10% | 7, 8 | 10D1 | | 17, 19 | ⅓Wor½W330Ω ±10% | C-CAPACITOR | | | 18 | 1/4Wor1/2W1KΩ ± 10% | 1, 2, 5 | CERAMIC DISC + 100% | | 22 | ½ Wor½ W3,3KΩ ± 10% | | $1.4 \text{KVDC} \ 0.0047 \mu^{-6}$ | | 23 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W2.2K $\Omega \pm 10\%$ | 4, | 500WV 0.01μ ± 100% | | 20 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W2K $\Omega \pm 5\%$ | 6, | 50WV 0.047\(\mu \pm \frac{+100\%}{0}\) | | 16 | 1W 4.7KΩ ± 10% | 3 ELECTROLYTIC | 25WV 470µ | | (NO. 7 V | FO UNIT) | R-RESISTOR | | | PRINTED BOARD | | 1 | 2W 5.6Ω ± 10% | | Q-FET & TRANS | | 2 | ½W 1KΩ ± 10% | | 1, 2 | 3SK22G | 4, 5 | $1W$ $3.3\Omega \pm 10\%$ | | 3 | 2SC372Y (2SC828P) | 3 | $10W 47\Omega \pm 10\%$ | | D-DIODE | 2505721 (2500201) | | $\frac{10W}{\text{Wor}^{1/2}W} = \frac{47\Omega \pm 10\%}{470 \text{K}\Omega \pm 10\%}$ | | D-DIODE | 18145 | 6~13 /4
[NO. 10 MAIN | | | | 13143 | PRINTED BOARD | PB-1075B | | L-INDUCTOR 1 (OSC COIL | 2 2 | PRINTED BOARD | PB-10/5B
PB-1092 | | | | | | | | 250µH | PRINTED BOARD | PB-1086A ×2 | | 5 (RFC) | 0.06/4 32T | PRINTED BOARD | PB-1073A | | VC-VARIABLE C | | PRINTED BOARD | PB-1074A | | 1 | B5240DS | PRINTED BOARD | PB-1083A | | TC-TRIMMER | | PRINTED BOARD | PB-1107 | | 1 | 150C 30P | PRINTED BOARD | PB-1109 | | 2 | 170C 10P×2 | PRINTED BOARD | PB-1116 | | C-CAPACITOR | | V-VACUUM TUBE | | | 1, 2 | DIPPED-MICA | 1 | 12BY7A | | | 500WV 650P \pm 10% | 2, 3 | 6JS6A | | 8, 10 | 500WV 100P ± 10% | D-DIODE | | | * 11 | 500WV 2000P ± 10% | 1, 2, 3 | 1S1941 | | 16 | 500WV 20P ± 10% | 4, 7, 8, 10, 11, 13 | 1S1007 | | 4 | CERAMIC NPO | 9 | 1S334 | | | 500WV 10P | Q-TRANSISTOR | | | 14 | 500WV 6P | 1, 2 | DTG-110B | | 19 | 500WV 82P | M-METER | | | × 17 | CERAMIC UJ | 1 | TYPE-45 500µA | | | 500WV 20P | S-SWITCH | | | ※ 18 | 500WV 7P | 1 (BAND) | 12-12-11 | | 20 | 500WV 2P | 2 (MODE) | ESR-E365R20Z | | 3, 5, 13 | CERAMIC DISC | 3, 10 (SLIDE) | SS-F-22-08 | | -, -, | 500WV 0.01µ | 4 (SELECT) | ESR-E246R20Z | | 6, 7, 9, 12, 15 | $50WV = 0.01\mu \pm \frac{100\%}{6}$ | 5 (HEATER) | WD-3201 | | | 30 W V 0.01 Z = 50 78 | | WD-3001 | | R-RESISTOR | 1/Worl/W10V0 + 10 | 6 (POWER)
7, 8, 9 (SLIDE) | | | 1 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W10K $\Omega \pm 10$ | | SS-H-23-08 | | 2, 5 | $\frac{1}{4}$ Wor½W100KΩ ± 10% | RL-RELAY | NIV 6 (AF2171) | | 3, 6 | ½Wor½W330Ω ± 10% | 1 | NK-6 (AE3171) | | 4, 7 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W100 $\Omega \pm 10\%$ | 2 | MX-2 | | 8 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W8.2K $\Omega \pm 10\%$ | X-CRYSTAL | **** | | 9 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W22K $\Omega \pm 10\%$ | 1 80M | HC/25U 9.520MHz | | 10 | $\frac{1}{4}$ Wor $\frac{1}{2}$ W270 $\Omega \pm 10\%$ | 2 40M | HC/25U 13.020MHz | | 11 | $\frac{1}{2}$ W 1 K $\Omega \pm 10\%$ | 3 20M | HC/25U 20.020MHz | | | IX UNIT) | 4 15M | HC/25U 27.020MHz | | PRINTED BOARD | PB-1060A | 6 (10A) | HC/25U 34.020MHz | | Q-FET | | 7 (10B) | HC/25U 34.520MHz | | 1 | MK-10Eor F | 8 (10C) | HC/25U 35.020MHz | | D-DIODE | | 9 (10D) | HC/25U 35.520MHz | | 1 | 1S145 | 1 0 WWV | HC/25U 16.020MHz | | L-INDUCTOR | | 5 CB | HC/25U 33.020MHz | | 1 | OUT COIL | 11 (AUX | HC/25U ——— | | 2 (RFC) | 250μH | OPTION | 110/230 | | TC-TRIMMER | | VS-VACUUM TUB | SE SOCKET | | 1, 2 | 1ZW20P (MAX) | 1 (9P) | TS-103 CO1 | | C-CAPACITOR | | 2, 3 (12P) | SB-0703 | | 3 | DIPPED MICA | J-JACK | | | | 500WV $60P \pm 10\%$ | 1, 4, 5, 7, 8, 11 | RCA CN7017 | | 5 | 500WV $20P \pm 10\%$ | 2, 10 | SG7615 (2P) | | | CERAMC DISC | 3 | FM-144 (4P) | | | | | | | 6 | JSO-239 (INCH) | | 30mA (LEAD LAMP) | |--|--|---|---| | 9 | 450—AB12M (12P) | C-CAPACITOR | | | 12 | P2240 | 1, 16, 107 | DIPPED MICA | | 13 | S-B0611 (8P) | | 500WV 10P ± 10% | | 14 | SA-602B (11P) | 2, 26, 29 | 500WV 470P \pm 10% | | 15 | S-16303 (4P) | 105 | 500WV $200P \pm 10\%$ | | P-PLUG | | 7, 27, 120, 121 | 500WV 1000P ± 10% | | 1, 4, 5, 7, 8, 11 | RCA CN7017 | 28, 98, 126 | 500WV 5P \pm 10% | | 2, 10 | SH-3001 (2P) | 48, 53, 55, 92, 99 | 500WV $100P \pm 10\%$ | | 3 | SH-3601 (3P) | 122 | 500WV 30P \pm 10% | | 6 | M-P-7 (INCH) | 4, 41 | 500WV 330P ± 10% | | 9 | 450-P12F | 6, 43 | 500WV 70P ± 10 % | | 12 | P2240 (USPLUG) | 9 | 500WV 270P ± 10% | | 13 | S-I0401 (8P) | 10, 42, 47, 5 | 500W V 50P ± 10% | | 14 | PA-602B (11P) | 44, 97, 106 | 500WV 20P ± 10% | | MJ-MULTI JACK | | 108 | 500WV 400P ± 10% | | 1, 2, 6 | SI-4701 (18P) | 104 | 500WV 80P ± 10% | | 3, 4 | XI-8007 (22P) | 45 | 500WV 300P ± 10% | | 5 | SI-4703 (14P) | 46, 111 | 500WV 150P \pm 10% | | F-FUSE | 31-4703 (141) | 123 | 500 WV 2PF ± 0.5P | | | AC 100~117V 5A | | | | 1 | | | 1KWV 2200P | | 2 | AC 200~220V 3A | | 160WV $2.2\mu \pm 20\%$ | | 2 | DC 13V 20A | 49 | MYLAR | | FH-FUSE HOLDE | | | 50WV $0.47\mu \pm 20\%$ | | 1 (AC) | SN-1001 | 18 | 50 WV $0.22 \mu F \pm 20\%$ | | (DC) |
SN-1102 | 13, 125 MICA | 1KWV 100P | | L-INDUCTOR | | 11 | 1KWV 200P | | 1, 4 (P. S.) | ½W56Ω 0.6φ2TS | 23 | 1.5KWV 1000P | | 5, 6 (P S.) | 1W56Ω 1 φ4TS | 25 CERAMIC | RDA30 150P ± 10% | | 2, 3, 11, 14, 15 | RFC TV-245 | 54 ELECTROLYTIC | | | 7 | PLATE RFC | 57 | 16WV 100μ | | 8 | TANK COIL | 116 | 16WV 1μ | | 9 | RFC 300µH | 63 | 16WV 220μ | | 12, 13, 16~21, 23, 26, 27, | | 127 | 16WV 220μ
16WV 470μ | | | | | | | 22 (P.S.) | 28.6MHz TRAP | 124 | 25WV 1000 μ | | 24 (P. S.) | ½W56Ω 0.3φ10TS | 109 | 450WV 2.2 _{\(\mu\)} | | 25 | L. P. FILTER | 77, 78 | 500WV 100µ | | 28, 29 | TRAP | 30, 31, 32, 39, 40, 67 FEE | | | T-INDUCTOR | | 68, 84, 37, 34, 35, 110 | 500WV 1000P ± 1009 | | 101A | ANT COIL A | 33, 38, 50, 52, 56, 58, 59, 60 | CERAMIC DISC | | 102 | GRID COIL A | 61, 66, 70, 71, 72, 73, 85, 89 | 50WV $0.047\mu + {100}\%$ | | 103 | DRIVE COIL A | 91, 94, 95, 96, 100, 103, 119 | | | 104 | ANT COIL B | 51, 69, 62, 81, 82 | 50WV 0.01 $\mu \pm \frac{100}{9}$ | | 105 | GRID COIL B | 83, 86, 87, 88, 90,118 | | | 106 | DRIVE COIL B | 3, 19, 21, 101, 102 | 500WV $0.01\mu \pm \frac{1009}{0}$ | | 111 | LOCAL COIL | 8, 14, 15, 20, 22, 93 | 500WV 0.0047 μ_{-}^{+} 100 0 | | 107 | 5MHz TRAP | 24 | 1.4KV DC 4700P± 1009 | | 114 | 6.36 MHz TRAP | 36, 75. | 1.4KV DC 0.01µ ± 1009 | | 115 | 3.18MHz TRAP | 74 | 1.4KVDC 0.001μ ± 100% | | T-TRANSFORME | | R-RESISTOR | 0.001µ = 0 | | 11 | POWER TRANS | 2 | $\frac{1}{2}$ W 3.3KΩ ± 10% | | 12 | 20mH 0.5A CHOKE | 3 | $\frac{1}{2}$ W 47KΩ ± 10% | | 14 | 1H 20mA CHOKE | 4, 9, 17, 39 | $\frac{1}{2}$ W | | TC-TRIMMER | Zonia CHORE | 14, 21, 51, 52 | $\frac{1}{2}$ W $\frac{100\Omega \pm 10\%}{1000}$ | | 1~4, 11~26, 28, 29 | 1ZW 50P (MAX) | 6 | $\frac{1}{2}$ W $\frac{10052 \pm 10\%}{2.2$ K $\Omega \pm 10\%$ | | | | | | | 5 | 1ZW 10P (MAX) | 7, 38, 49 | $\frac{1}{2}$ W 1 K $\Omega \pm 10\%$ | | 6, 7, 10 | B-2PY 100P (MAX) | 8, 25 | $\frac{1}{2}$ W 10 KΩ ± 10 % | | 8, 9 | B-1PY 40P (MAX) | 28, 29 | $\frac{1}{2}$ W 470KΩ ± 109 | | 27 | 150C 10P 1.5KV | 16, 18 | $\frac{1}{2}$ W $470\Omega \pm 10\%$ | | VC-VARIABLE C | | 19, 20, 23, 24, 31, 32, 33,34 | | | I (PLATE) | RT-18B-300VC | 22 | $\frac{1}{2}$ W $330\Omega \pm 10\%$ | | |) B1240 DS | 26 | $\frac{1}{2}$ W $560\Omega \pm 10\%$ | | VO DOTENTIONS | TER | 35 | $\frac{1}{2}$ W 680 $\Omega \pm 10\%$ | | VR-POTENTIOME | | 10, 11 | 1W 56Ω ± 10% | | 1 (AF-RF | | 10, 11 | | | | EVK A8AF02314 | 30 | $1W 47K\Omega \pm 10\%$ | | 1 (AF-RF | EVK A8AF02314 | | 1W 47KΩ ± 10% M-1 SHUNT | | 1 (AF-RF GAIN 2 (MIC GA | (IN) EVK AOA F02339 | 30
12 | M-1 SHUNT | | 1 (AF-RF GAIN 2 (MIC GAIN CARRIE | AIN EVK AOAF02339 | 30
12
5 | $M-1$ SHUNT 3W 5.1KΩ \pm 5% | | 1 (AF-RF GAIN 2 (MIC GA CARRIE 3 (CLARIFIE | AIN EVK AOAF02339 R) ECVBOHS15A14 | 30
12
5
37 | M-1 SHUNT 3W 5.1KΩ ±5% 5W 18KΩ ±10% | | 1 (AF-RF GAIN 2 (MIC GACARRIE 3 (CLARIFIE | EVK AOAF02314 AIN EVK AOAF02339 R) ECVBOHS15A14 V101KR B1KΩ | 30
12
5
37
40 | M-1 SHUNT $3W$ 5.1KΩ ± 5% $5W$ 18KΩ ± 10% $5W$ 1.5KΩ ± 10% | | 1 (AF-RF GAIN 2 (MIC GACARRIE 3 (CLARIFIE 4 | AIN EVK AOAF02339 R) ECVBOHS15A14 V101KR B1KΩ EVLS3AA00B53 | 30
12
5
37
40
** 44 | M-1 SHUNT
3W 5.1KΩ ± 5%
5W 18KΩ ± 10%
5W 1.5KΩ ± 10%
$\frac{1}{2}W$ 4.7KΩ ± 10% | | 1 (AF-RF GAIN 2 (MIC GA CARRIE 3 (CLARIFIE 4 7 6 (PO ADJ) | EVK AOAF02314 AIN EVK AOAF02339 R) ECVBOHS15A14 V101KR B1KΩ | 30
12
5
37
40
** 44 | $M-1$ SHUNT $3W$ 5.1KΩ ± 5% $5W$ 18KΩ ± 10% $5W$ 1.5KΩ ± 10% $\frac{1}{2}W$ 4.7KΩ ± 10% $\frac{1}{2}W$ 33KΩ ± 10% | | 1 | AIN EVK AOAF02339 R) ECVBOHS15A14 V101KR B1KΩ EVLS3AA00B53 EVHBOAS15B13 | 30
12
5
37
40
** 44
36 | $M-1$ SHUNT $3W$ 5.1KΩ ± 5% $5W$ 18KΩ ± 10% $5W$ 1.5KΩ ± 10% $\frac{1}{2}W$ 4.7KΩ ± 10% $\frac{1}{2}W$ 33KΩ ± 10% $\frac{1}{2}W$ 22KΩ ± 10% | | 1 (AF-RF GAIN 2 (MIC GACARRIE 3 (CLARIFIE 4 7 6 (PO ADJ) SP-SPEAKER | AIN EVK AOAF02339 R) EVBOHS15A14 V101KR B1KΩ EVLS3AA00B53 EVHBOAS15B13 B-26 VC 4~8Ω | 30
12
5
37
40
** 44
36
1
13 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 1 (AF-RF GAIN 2 (MIC GA CARRIE 3 (CLARIFIE 4 7 6 (PO ADJ) SP-SPEAKER | AIN EVK AOAF02339 R) EVBOHS15A14 V101KR B1KΩ EVLS3AA00B53 EVHBOAS15B13 B-26 VC 4~8Ω | 30
12
5
37
40
** 44
36 | $M-1$ SHUNT $3W$ 5.1KΩ ± 5% $5W$ 18KΩ ± 10% $5W$ 1.5KΩ ± 10% $\frac{1}{2}W$ 4.7KΩ ± 10% $\frac{1}{2}W$ 33KΩ ± 10% $\frac{1}{2}W$ 22KΩ ± 10% | FI-101 Board Complement by Model Number | FT-101
Version | VFO | REG | HF/IF | LO/IF | AUDIO | RF | MOD | RECT | BLANKER | PROCESS | |---|-----------------|---------|---------|---------|---------|---------|---------|---------|--------------------|---------| | FT-101 (Early)
S/N 25,000&Down | PB10 5 6 | PB1079A | PB1084C | PB1080A | PB1081C | PB1077B | PB1078A | PB1076A | Part of
PB1080A | None | | FT-101 (Late)
S/N 25,001&Up | PB10 5 6 | PB1185 | PB1180 | PB1183 | PB1189 | PB1181A | PB1184 | PB1076B | PB1182 | None | | FT-101B (Early)
S/N 6,000&Down | PB1056 | PB1185 | PB1180 | PB1183B | PB1315 | PB1181B | PB1184A | PB1076B | PB1192 | None | | FT-101B (Late)
S/N 6,000&Up | PB1056 | PB1314A | PB1180B | PB1183B | PB1315A | PB1181B | PB1184A | PB1076B | PB1192 | None | | FT-101E/EE/EX
(Early)
S/N 15,000&Down | | PB1314A | PB1180B | PB1183B | PB1315A | PB1181B | PB1184A | PB1076B | PB1192 | PB1494 | | FT-101E/EE/EX
(Mid)
S/N 15,000-20,000 | PB1056 | PB1314A | PB1180B | PB1183B | PB1315A | PB1181B | PB1184A | PB1076B | PB1192 | PB1534 | | FT-101E/EE/EX
(Late)
S/N 20,001&Up | PB1056 | PB1314A | PB1180B | PB1183C | PB1315A | PB1181B | PB1184A | PB1076B | PB1582 | PB1534A | | FT-101F/FE/FX
(All)
S/N All Numbers | PB1056 | PB1547 | PB1180B | PB1183 | PB1315B | PB1181B | PB1184A | PB1076B | PB1582B | PB1534A |